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1. Introduction
This thesis studies dynamic flows comprised of infinitesimally small agents (=flow particles) travelling
through a network while continuously adapting their choice of route based on the current state of
the network as determined by the flow up to the current time. The main motivation for such models
comes from the study of large-scale road traffic wherein individual drivers try to get as fast as possible
from their starting point to their destination and adjust their routes on-the-fly whenever they get new
information about current congestion events (e.g. via traffic radio or navigational devices). To make
this idea clearer, we start with a small, slightly informal example (see Example 3.65 in Chapter 3 for
the more detailed, formal version):

Example 1.1. Consider the following network represented as a directed graph with edge costs
denoting the number of time units it takes to traverse an edge without congestion. In addition, each
edge has a capacity associated with it determining how much flow this edge can handle at once before
the traversal time starts to be affected by congestion effects. In our example here, we only have two
types of capacities: Small capacities (indicated by thin edges) and large enough capacities such that
no congestion will ever take place (indicated by thick edges):

s1

v

s2 t

1 1

3

11

Now, imagine a group of agents (represented by a continuous flow of particles) entering the network at
the left-most node s1 with the goal of reaching the right-most node t. They have two paths to choose
from: They may either travel via nodes v and s2 or along the direct edge from s1 to t. Since the
network is currently empty, both choices seem equally good. So, let us assume that, as these agents
start their journey one after the other at node s1, they all decide to take the upper path.1

s1

v

s2 t s1

v

s2 t

However, just as the last of these agents have entered edge s1v (and the first ones arrive at node v) a
new group of agents arrives in the network: This time at node s2 but with the same destination t.
These agents, again, can choose between two possible paths but, as one of them is strictly faster (the
direct edge towards t), they all choose this one. This, though, is more than this edge’s capacity allows
for and, thus, a traffic jam starts to form on this edge (represented here by a vertical queue at the
start of this edge):

1Note that time moves continuously here even though our figures only show snapshots of the flow at discrete points in
time.
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While this is happening, the agents that started from node s1, currently traversing edge vs2 and
originally planning to take the now congested edge s2t next, are informed about this new state of the
network. Hence, by the time they arrive at node s2 some of them may reconsider their route choice
and opt to avoid the traffic jam by taking a detour via node s1 while the rest continues on its original
route and joins the end of the traffic jam on edge s2t (we assume here that this split results in the
current travel times along both paths staying equal and, so, both choices are valid):

s1

v

s2 t s1

v

s2 t

s1

v

s2 t s1

v

s2 t

Already in this small, informal example we can observe several interesting properties of the flows
arising from our rather simple behavioural assumptions: First of all, these flows are certainly not
unique. For example, the agents initially starting at node s1 could have also chosen the direct edge
towards t resulting in a very different flow evolution. Next, and maybe most importantly, the adaptive
and, in hindsight, imperfect nature of the individual agents’ decisions may lead to situations where
flow travels around a cycle. This, in particular, means that solely path-based flow models may be
insufficient for capturing the full range of possible flow dynamics. Additionally, this might also lead to
quite complex and difficult to analyse flow patterns.
On the other hand, the sequential nature of the flow pattern in the above example suggests that

maybe our flows could still exhibit some nice structure which might even allow us to compute such
flows in some iterative fashion similarly to how one picture can be deduced from the previous one
in our example. However, for larger, more complex networks the complicated interdependence of
the choices made at the same time at different nodes in the network makes this far from obvious.
Moreover, even when only considering a single node, the distribution of the outflow has to be chosen
carefully as it may have an instantaneous impact on the current travel times on the chosen paths. In
our example a different flow split of the blue particles at node s2 may lead to a different congestion
on either of the two outgoing edges (as both of them have a small capacity) and, thus, potentially
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immediately invalidates one of the chosen routes. This indicates that even just showing existence of
dynamic flows consistent with our behavioural assumptions might be a non-trivial task.

Finally, all of this, of course, also critically depends on the underlying physically flow model and, in
particular, the exact way we chose to model congestion. Since we are studying flows over time, the
flow dynamics on a single edge can have ripple effects throughout the whole network both in terms
of influencing the behaviour of the individual agents and in how these dynamics effect the physical
propagation of the flow particles through the network.

Before we describe in more detail how we will approach these challenges in this thesis, we want to
give a brief historic overview over the study of dynamic flows.

1.1. A (Brief) Historic Overview of Dynamic Flows
Right from the very beginning in the middle of the 20th century the study of network flows was
motivated by the goal of better understanding transportation and communication networks (see [FF62,
p. 1]) – a task that has only become more important over the last decades with the rapid growth
of the Internet and the increasingly urgent challenge of mitigating the climate crisis to which the
transportation sector and, in particular, road traffic is a main contributor (see [Jar+22]).

Static Flows. The field started out with the study of static flows. Here, in the simplest case, we are
given a directed graph G = (V,E) with capacities on the edges and two special nodes: A source node s
and a sink node t. A flow can then be described completely by a vector (fe)e∈E ∈ RE≥0 giving for every
edge the amount of flow on this edge. In order to be considered feasible such a flow must be bounded
by the edge capacities and satisfy flow conservation at all nodes except for the source and the sink
node. A natural question is then how to find a maximal such flow, i.e. one where the amount of flow
leaving the source node or, equivalently, entering the sink node is maximal. The famous Max-Flow
Min-Cut Theorem which states that the maximum value of such a flow is equal to the minimal s,t-cut
was one of the first results in this field ([FF56]). Many extensions of this base model are known and
studied to this day (e.g. multiple source/sink nodes, multiple commodities with different source/sink
nodes, additional costs on the edges, fixed supplies/demands at sources/sinks, different objectives,
. . . ). Already by 1962 the field had grown enough that Ford and Fulkerson were able to write a whole
book on “Flows in Networks” [FF62].

Dynamic Flows. While their book predominantly focused on static flows, it also already includes
a section on dynamic flows ([FF62, Chapter III, Section 9]) which had been introduced four years
prior in [FF58] by the same authors. In this model every edge has, in addition to its capacity limiting
the amount of flow allowed to enter the edge during any unit time interval, a traversal time which
determines how long it takes flow to traverse an edge from one end to the other. Time is partitioned
into a finite number of equally sized time periods 1, 2, . . . , T during each of which the flow remains
constant. Thus, a dynamic flow can be described by a (finite-dimensional) vector (fe(θ))θ∈[T ] ∈ RT
for every edge e where fe(θ) denotes the inflow into edge e during the θ-th time period. The outflow
from this edge during the same time period is then described by fe(θ − τe) where τe ∈ N0 denotes
the fixed traversal time of edge e. Similarly to the static case, Ford and Fulkerson then studied the
problem of determining a maximal such dynamic flow and showed that this can be done efficiently by
reducing the problem to a sequence of static flow problems.
Later on, Fleischer and Tardos showed in [FT98] that this algorithm, as well as several other

ones developed in the meantime, can also be applied to the same problems for dynamic flows with
continuous time. In this setting flow is now described by a function fe : [0, T ] → R≥0 denoting for
every time θ ∈ [0, T ] the rate fe(θ) at which flow enters edge e at that time. We refer to [Sku09] for a
modern introduction to the study of such dynamic flows. This model is now already quite close to
the physical model described in our initial example. However, what is still missing is a proper way of
modelling congestion.

The Vickrey Point Queue Model. Since, in the models discussed so far, the traversal times were
fixed, the only way of modelling congestion is to have particles wait at nodes. This is often technically
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allowed in these models but, typically, not used as long as one is only interested in optimal flows.
This changes once we view the flow as being comprised of individual agents making their own, selfish
decisions (instead of trying to achieve some system optimum). For such a game theoretic setting
(though for the case of only a single edge and giving the agents a choice over their departure time
instead of over their route) Vickrey discussed in his seminal 1969 paper on congestion theory [Vic69]
six different types of congestion and how to model them by suitable edge flow dynamics.
One of those, called “pure bottleneck situation” in his paper, is maybe the most natural extension

of the model discussed in the previous paragraph: Here, every edge e is again characterised by two
values, a free flow travel time τe and a capacity νe. As long as particles enter the edge at a rate below
this capacity, no congestion takes place and traversing the edge requires exactly the time given by
the free flow travel time. If, however, the inflow rate f+

e exceeds the capacity, a queue starts to form
at the start of the edge and particles have to wait there until they are allowed to enter the edge.
Thus, the total time needed to traverse the edge then consists of a waiting time in the queue plus the
constant free flow travel time (see Figure 8 for a graphical depiction). This model (and its application
to full networks) has been studied and adapted extensively in the past decades (a recent bibliometric
review [LHY20] counted over 200 papers published on this topic) and is nowadays also called Vickrey
point queue, deterministic queueing or just bottleneck model.

v w

f+
e νe

τe

v w v w

f+
e

νe

τe

v w

Figure 1: An edge with congestion modelled using the Vickrey point queue model. If the edge inflow
rate f+

e is smaller than the edge capacity νe, flow traverses the edge without experiencing
any congestion (left). If the inflow rate is larger than the capacity, a queue forms at the tail
of the edge (right).

Dynamic Equilibria. Within such a game theoretic view it now becomes natural to study equilibrium
flows, i.e. dynamic flows where at every point in time every particle travels along a route which is
compatible with decisions of a selfishly acting agent. Of course, how such selfish decisions look like
depends on the information available to those agents. Two main models have been studied here,
giving rise to two types of equilibria: Equilibria based on current information where, as in our initial
example, agents choose their route based on the current state of the network and then adjust their
choices on-the-fly to changing travel times, and equilibria based on full information where agents make
their routing decision already anticipating future changes of travel times and, thus, always choose
routes which are best possible in hindsight.

Current Information Equilibria. One of the first to study dynamic flows which could be considered
equilibria in a current information setting was Yagar who in [Yag71] proposed the following heuristic
approach for simulating road traffic: At first, all flow is just assigned to shortest paths. However,
whenever this leads to queues, flow leaving such a queue is then considered as new flow entering the
network and, thus, is assigned a new currently shortest path. While no theoretical properties of such
flows are shown here and the exact model differs from the ones discussed here in several ways, this
can certainly be seen as one of the earliest motivations for studying this type of dynamic equilibrium.
Indeed more formal definitions of such equilibria were then studied by Friesz, Luque, Tobin and Wie
in [FLTW89, Section 3], Boyce, Ran and Leblanc in [BRL93; BRL95] and Ran and Boyce in [RB96,
Chapter 7] who characterised these equilibria as solutions to certain variational inequalities. These
works also used more general edge dynamics described by differential equations and introduced the
adjective “instantaneous” as a way of referring to travel times/equilibrium states based only on current
information. Note, however, that these models are also quite complex and, thus, do not allow for
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much theoretical analysis (e.g. showing existence of equilibria, studying their quality or providing
non-heuristic algorithms for computing them). Moreover, the exact way these models are formalised
(often using path-based formulations!) can lead to certain unintuitive effects which call into question
how well these formal models actually match their verbal descriptions. For example Boyce, Ran
and Leblanc note that “[the] restricted definitions of used links and routes may cause the underlying
definition of instantaneous DUO [i.e. current information equilibria] to be vacuous in some cases.”
([BRL95, p. 130])

Full Information Equilibria. As agents in the full information setting choose their route with full
knowledge over the true future travel times in the network, adaptive route choice is not relevant here
and, therefore, a path-based model is much less problematic. In fact the path-based formalisation
of full information dynamic equilibria introduced by Friesz, Bernstein, Smith, Tobin and Wie in
[Fri+93, Definition 2] has clearly stood the test of time as it is still in use today. Nevertheless, even
though this model immediately got a lot of attention in the transportation science community (see
[PZ01] and [FH19] for two survey articles on this very active area of research), it took until 2000 that
existence of such equilibria for a fairly general class of edge dynamics was established by Zhu and
Marcotte in [ZM00]. And even then, this existence result was highly non-constructive as it is based
on a characterisation of dynamic equilibria by an infinite dimensional variational inequality and an
existence result for solutions of those.
A completely new approach to studying equilibria when using the Vickrey point queue model for

the edge dynamics was then opened up by Koch and Skutella with the introduction of so called
thin flows in [KS11]. These thin flows are somewhat reminiscent of the early results by Ford and
Fulkerson for optimal dynamic flows in that thin flows are static flows which can be used to completely
characterise dynamic equilibria (in the full information setting). Koch and Skutella then used this
characterisation to study the quality of such equilibria compared to optimal flows. This new structural
insight let to an increased interest in this specific model: Cominetti, Correa and Larré [CCL15] used it
to show existence and uniqueness (in terms of travel times) for dynamic equilibria, Cominetti, Correa
and Olver [CCO22a] to study the long term behaviour and convergence to a steady state, Bhaskar,
Fleischer and Anshelevich [BFA15] as well as Correa, Cristi and Oosterwijk [CCO22b] to derive further
bounds on their quality and Olver, Sering and Koch [OSK22] to study continuity properties. Moreover,
the model was also extended to the multi-source multi sink case by Sering and Skutella [SS18], to a
bicriteria setting by Oosterwijk, Schmand and Schröder [OSS22], to include spillback and kinematic
waves by Sering and Vargas Koch [SV18] and to allow for time varying capacities and time varying free
flow travel times by Pham and Sering [PS20]. We refer to a recent survey article by Schmand [Sch21]
for a good overview and to the PhD theses by Koch [Koc12] and Sering [Ser20] for a comprehensive
introduction to and study of the base model and several of its extensions, respectively.

Competitive Packet Routing. Finally, we also want to briefly mention the discrete counterpart
to the continuous flow model we have been discussing so far: Competitive packet routing. In this
model, instead of infinitesimally small flow particles, we have atomic unsplittable packets that have to
traverse a given network. This model (and its many variations) is its own large field of research and
we refer to the PhD thesis of Vargas Koch [Var20] for a good introduction to it. Interestingly, the
study of equilibria in this model seems to be mostly concerned with Nash equilibria, i.e. equilibria
of the full information type. One of the few exceptions is Ismaili who in [Ism17, Section 5] studied
packet routing games with so called “GPS-agents” which behave in a very similar way to how it is
assumed of the infinitesimal agents making up a continuous equilibrium flow in the current information
setting discussed before. Ismaili then studies the quality of the routing choices of such agents and, in
particular, shows that there exist networks in which they can get trapped in cycles forever ([Ism17,
Theorem 8]).

Even though one could argue that such discrete packet routing models are closer to reality when
trying to model road traffic (as individual cars are certainly unsplittable and not infinitesimal in size),
we will only consider the continuous model here. One reason for that is that in many cases continuous
flows tend to be nicer behaved and, so, more open to formal study (e.g. equilibria may not even exist
in packing routing models, cf. [Var20, Theorems 19, 28] or [SVZ22, Proposition 1]). Another reason is
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that, as the number of packets (vehicles) increases, it may become easier to model and, in particular,
compute the resulting traffic flow as an aggregate instead of considering all the interactions between
individual agents. Moreover, it seems intuitively clear that the two models approximate each other if
the packet size only gets small enough (compared to the total flow volume). Nevertheless, formally
establishing such a connections has long been an open problem and only very recently achieved for
the deterministic queuing model by Sering, Vargas Koch and Ziemke in [SVZ22] and most recently
extended by Olver, Sering and Koch [OSK23] to full information equilibria therein (again based on
structural insights involving thin flows).

1.2. Thesis Contribution and Organization
Inspired by the recent progress in understanding dynamic equilibria in the full information setting,
the goal of this thesis is to gain similar insights for the current information setting. That is, we study
dynamic flows in networks with deterministic queueing wherein particles only ever enter edges which
lie on currently shortest paths towards their destination. Following the naming conventions of Ran
and Boyce we will call those equilibria instantaneous dynamic equilibria (IDE). We have already seen
a first example for such an equilibrium flow at the start of this chapter (Example 1.1) where we also
discussed some of the interesting questions relating to this equilibrium concept.

We now give a short overview over the following chapters of this thesis as well as its main contributions
towards answering those questions:

In Chapter 3 we formally introduce first the physical flow model and then our behavioural model.
While the physical model is certainly not new (it is the same as the one used e.g. in [KS11; CCL15]),
we still describe the model in full detail to ensure that this fundamental aspect of our model is formally
sound. We also present several equivalent definitions used for it in the literature and show their
equivalence. We then use these equivalent characterisations to deduce five basic properties of the
deterministic queueing model. Finally, we establish our definition of instantaneous dynamic equilibria
by adapting the label-based definition of full information dynamic equilibria used in [KS11; CCL15] to
the current information setting. At the end of this chapter, in Section 3.3, we also provide a summary
of the whole model for easier reference.
Following the definition of our model there are three chapters containing our main results: In

Chapter 4 we show existence of IDE by reducing this problem to the existence of IDE-extensions
and (for certain classes of networks) even further down to the existence of local IDE-extensions (e.g.
at a single node). We use this general framework to highlight the commonalities (but also differences)
between three different approaches for showing existence of IDE (for different classes of networks):
One using an infinite dimension fixed point theorem, one using a finite dimensional fixed point theorem
and one using a convex optimization problem. The latter two approaches also make critical use of a
variant of thin flows adapted from the full information setting to our setting.

In Chapter 5 we then study the computational complexity of finding IDE. On the positive side
we show that for single-commodity networks we can compute IDE-thin flows (and, therefore, IDE-
extensions) in polynomial time and complete IDE in finite time. On the negative side we give examples
for IDE that require an exponential or, in the case of multi-commodity networks, even infinite number
of extensions and show NP-hardness of several decision problems involving IDE. The proof of the
latter also showcases our first use of gadget-based constructions of IDE-networks which allow us to
build and analyse quite complex IDE-instances.
These constructions then also play an important role in the final Chapter 6 where we study the

quality of IDE. In particular, we show that in single-commodity networks IDE are guaranteed to
terminate and give explicit upper and lower bounds on the worst case values of both the time of
termination and the total travel time. We then show that in multi-commodity networks termination
is not guaranteed anymore by providing a finely tuned instance wherein particles travelling along
currently shortest paths get trapped in cycles forever. We conclude this chapter by summarising our
results on the quality of IDE in terms of the corresponding Price of Anarchy.

The main results shown in Chapters 4 to 6 have been published in [GH19; GHS20], [GH21; GH23]
and [GH20; GH22], respectively. Here, we present most of them in greater generality and with
rewritten and extended proofs.
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On how this thesis is written: One of our main goals when writing this thesis was to be as
mathematically precise as possible, both when it comes to the statements of definitions and
theorems and with regards to their proofs. This is mostly born out of the author’s intrinsic desire
for mathematical rigour but, hopefully, also makes it easier to adapt or even directly use the
results presented here to/in related models in the future. The downside of this approach is, of
course, that some proofs have become quite long and technical. To mitigate this we tried our best
to make the proofs as modularised as possible to allow a reader more interested in the high-level
ideas to skip the detailed proofs of more technical lemmas and claims while still getting the
important ideas of the main proofs. Moreover, we often give a rough sketch of the intuitive ideas
behind a proof before delving into its formal details (often highlighted by boxes like this one).
Additionally, we collected in Chapter 2 all but the most basic definitions from various areas

of mathematics that will come up at some point in this thesis together with some key results
from these areas that we will make use of. Importantly, this chapter is not meant to be read
in its entirety but rather intended as a place to look up definitions/theorems the reader might
not be familiar with once they come up in the main part of this thesis. In the appendix we also
providebotha list of definitionsand a list of symbols/notationsused in this thesis.
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2. Preliminaries
In this chapter we collect some basic definitions and statements from the areas of measure theory,
topology, graph theory, optimization and complexity theory which we will then use in this thesis. Note
that this chapter is not intended to be read through in its entirety (except for maybe the first section
on general notations) but instead as a reference-chapter when reading the other chapters (together
with the lists of definitions and notations in the appendix).

2.1. General Notation
We start by stating some general notations and conventions we will use throughout this thesis.

Sets

We denote by R the set of real numbers and by R̃ := R ∪ {±∞} the set of extended real numbers.
We use R>0, R≥0 and R̃≥0 to refer to the subsets of strictly positive real numbers, non-negative real
numbers and non-negative real numbers including ∞, respectively We denote by N0 := { 0, 1, 2, . . . }
the natural numbers including 0 and by N∗ := { 1, 2, . . . } the natural numbers excluding 0.

For any x ∈ R≥0 we define dxe := min {n ∈ N0 | n ≥ x } and bxc := max {n ∈ N0 | n ≤ x } and for
any natural number n ∈ N0 we denote by [n] := { 1, 2, . . . , n } the set of natural numbers from 1 to n.
In particular, we use [0] as a synonym for the empty set. To refer to the set of natural numbers from
0 to n we use the notation [n+ 1]− 1 = { 1, 2, . . . , n+ 1 } − 1 := { 0, 1, . . . , n }.
For any sets A and B we denote by 2A the power set of A (i.e. the set of subsets of A), by A×B

the product set of A and B (i.e. the set of tuples (a, b) with a ∈ A, b ∈ B) and by AB the B-fold
product of A (i.e. the set of tuples (ab)b∈B). If there is no danger for confusion, we will just write (ab)
instead of (ab)b∈B to refer to elements of AB .
For any subset B′ ⊆ B we denote by |B′ : AB → AB

′
the projection from AB to AB

′
. If C is a

third set and (ab,c)b∈B,c∈C an element of AB×C , we use (ab̂,�) := (ab,c)|{ b̂ }×C = (ab̂,c)c∈C ∈ A
C as a

shorthand for the projection of (ab,c) to { b̂ }×C. We write B ∪̇C for the union of B and C if the two
sets are disjoint (and we want to emphasise this. If, in such a situation, we have two tuples (ab) ∈ AB
and (ac) ∈ AC , we use (ab) ⊕ (ac) to refer to the tuple (a′x)x∈B ∪̇C ∈ AB∪C defined by a′x := ab if
x = b ∈ B and a′x := ac if x = c ∈ C.

For sums we make use of the shorthand
∑
a∈(ab)

a :=
∑
b∈B ab and the convention

∑
b∈∅ ab = 0.

Functions

For any function f : A → B and any subset A′ ⊆ A we denote the restriction of f to A′ by
f |A′ : A′ → B. We write the characteristic function of a subset A′ ⊆ A by

1A′ : A→ R, a 7→

{
1, if a ∈ A′

0, else.

If f : J → R is a function on some interval J ⊆ R, we use ∂f to denote the derivative of f (we
sometimes also write ∂θf to emphasise the variable θ with respect to which the derivative is taken).
Moreover we use ∂−f and ∂+f two denote the left and right derivatives of f , respectively. Note, that
we will never use f ′ to denote a derivative and instead reserve ′ for use in variable names.

Definition 2.1. Let f : J → R be any function on some interval J ⊆ R. We then say that f is

• right-constant if for any θ ∈ J there exists some ε > 0 such that f |[θ,θ+ε) is constant,

• non-decreasing if it satisfies θ ≤ ζ =⇒ f(θ) ≤ f(ζ) for all θ, ζ ∈ J and

• non-increasing if it satisfies θ ≤ ζ =⇒ f(θ) ≥ f(ζ) for all θ, ζ ∈ J .

If f is non-decreasing we say that it is strictly increasing (from the left) at θ ∈ J if it satisfies

ζ < θ =⇒ f(ζ) < f(θ) for all ζ ∈ J.
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2.2. Measure Theory
As flows in our model will be described by (Lebesgue)-measurable functions on R≥0, we will need some
basic definitions and results from measure theory. We follow here mostly the introduction in [RF10].

The Lebesgue Measure

Definition 2.2. Let J ⊆ R be any non-empty interval. Then the outer (Lebesgue) measure µ∗
on J is defined by

µ∗ : 2J → R̃≥0, A 7→ inf

{ ∞∑
k=1

(bk − ak)

∣∣∣∣∣ ak, bk ∈ R : A ⊆
∞⋃
k=1

(ak, bk)

}
.

For any set A ⊆ J we say that

• A is a (Lebesgue) null set if it has measure zero, i.e. µ∗(A) = 0

• A is (Lebesgue) measurable if it satisfies µ∗(A) = µ∗(A ∩B) + µ∗(A \B) for any set B ⊆ J .

The restriction of µ∗ to only the Lebesgue measurable subsets of J is called the Lebesgue measure
and we will denote it by µ. Since µ is the only measure we use in this thesis, we will usually omit the
word Lebesgue and just talk about the measure on J .

Observation 2.3. We observe some basic properties of null sets:

• Any countable set A ⊆ J is a null set.

• Any null set N ⊆ J is measurable.

• The countable union of null sets is again a null set.

Definition 2.4. Let J ⊆ R be any interval. A function f : J → R̃ is called (Lebesgue) measurable
if for any C ∈ R the set { θ ∈ J | f(θ) ≤ C } ⊆ J is measurable.

Definition 2.5. Let f, g : J → R̃ be two functions on some interval J ⊆ R.

• We say that f and g are equal almost everywhere if there exists null set N ⊆ J such that
f |J\N = g|J\N . We denote this by f =a.e. g.

• We say that f is bounded by g almost everywhere if there exists some null set N ⊆ J such
that f |J\N ≤ g|J\N . We denote this by f ≤a.e. g. If g is a constant function we also say that f
is essentially bounded.

Observation 2.6. • =a.e. is a equivalence relations on the set of functions from J to R̃.

• =a.e. is compatible with addition, multiplication and scalar multiplication.

Proposition 2.7 ([RF10, Chapter 3, Proposition 5]). Let f, g : J → R̃ be two functions with f =a.e. g.
If f is measurable, then so is g.

Proposition 2.8 ([RF10, Chapter 3, Proposition 9]). Let fn : J → R̃ be a sequence of measurable
functions converging pointwise almost everywhere to a function f : J → R̃. Then f is measurable.

The Morse-Sard Theorem

The Morse-Sard Theorem states that for sufficiently smooth maps f the set of critical values
f({ θ | ∂f(θ) = 0 }) has Lebesgue measure zero (cf. e.g. [Hir76, Chapter 3, Theorem 1.3]). In the one-
dimensional case this even holds without the smoothness-condition. It is often stated for (absolutely)
continuous functions where it can be derived from Vitali’s Covering Theorem (cf. [Mar22, Theorem
3.2.8]) but the following fundamental lemma by Varberg ([Var65]) actually implies that it holds for
any function f : R→ R:
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Proposition 2.9 ([Var65, Fundamental Lemma]). Let f : J → R be any function from some compact
interval J ⊆ R to R. Then for any number K ≥ 0 and any set S ⊆ J such that the derivative of f
exists for all θ ∈ S and satisfies |∂f(θ)| ≤ K, we have

µ∗(f(S)) ≤ K · µ∗(S).

Proposition 2.10. Let f : J → R be any function.

a) The set of images of points where the derivative of f exists and is zero is a null set, i.e.

µ(f({ θ ∈ J | ∂f(θ) = 0 })) = 0.

b) If f is non-decreasing, then we have |f−1(θ)| ≤ 1 for almost all θ ∈ R.

Proof. a): If J is bounded, then this follows immediately from Proposition 2.9 by choosing S :=
{ θ ∈ J | ∂f(θ) = 0 } and K = 0. Otherwise we can cover J by a countable sequence of compact
intervals and apply Proposition 2.9 for each of those. As any countable union of null sets is still
a null set, this shows the claim.

b): This can be deduced from a) (see e.g. the proof of [Mar22, Corollary 3.2.9]) but we can also show
this directly: For any n ∈ N∗ denote by

Sn := {x ∈ R | ∃a, b ∈ J : |b− a| ≥ 1
n and f(a) = f(b) = x }

the set of values of f such that an interval of length at least 1
n gets mapped to x by f . Note,

that any such set Sn contains at most countably many points as f is non-decreasing and, thus,
any two intervals [a, b] and [a′, b′] attesting for two different points x, x′ ∈ Sn must be disjoint.
Thus, the same is true for the set

S :=
⋃
n∈N∗

Sn.

Since this set contains all values x ∈ R with at least two preimages, this shows the claim.

The Lebesgue Integral

Let J ⊆ R be an interval, f : J → R̃ a measurable function and J ′ = [a, b] ⊆ J some bounded
subinterval. Then we denote by

∫
J′
f(ζ)dζ =

∫ b
a
f(ζ)dζ ∈ R̃ the Lebesgue integral of f on J ′ (if it

exists). We recall the following properties of the Lebesgue integral (see [RF10, Chapter 4]):

Proposition 2.11. Let f, g : J → R be two measurable functions.

• We have f =a.e. g if and only if
∫
J
|f(ζ)− g(ζ)|dζ = 0.

• Taking integrals is compatible with =a.e., i.e. for any a, b ∈ J such that
∫ b
a
f(ζ)dζ exists we have

f =a.e. g =⇒
∫ b

a

f(ζ)dζ =

∫ b

a

g(ζ)dζ.

• The Lebesgue integral is monotone, i.e. for any a, b ∈ J such that
∫ b
a
f(ζ)dζ and

∫ b
a
g(ζ)dζ exist

we have

f ≤a.e. g =⇒
∫ b

a

f(ζ)dζ ≤
∫ b

a

g(ζ)dζ.

Definition 2.12. Let f : J → R̃ be a measurable function and p ∈ [1,∞). We say that f is p-
integrable if

∫
J
|f(ζ)|pdζ <∞. We call it locally p-integrable if it is p-integrable on every compact

subset of J . For p = 1 we usually just say (locally) integrable instead of (locally) 1-integrable.
We denote the sets of all (locally) p-integrable functions on J by Lploc(J) and Lp(J), respectively.
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Note that, for compact intervals J , the notions of locally p-integrable and p-integrable are equivalent.
We now collect several useful statements for locally integrable functions:

Proposition 2.13. Let f, g : J → R be two measurable functions with |f | ≤a.e. |g|. Then

g ∈ Lploc(J) =⇒ f ∈ Lploc(J).

This follows directly from the definition of local p-integrability and the monotonicity of the Lebesgue
integral.

Proposition 2.14. Let f : J → R be a measurable, locally essentially bounded function. Then f is
locally p-integrable for any p ∈ [1,∞).

This follows from the previous proposition by observing that locally constant functions are locally
p-integrable.

The following proposition is a very useful tool for showing that some equality for a locally integrable
function holds almost everywhere on some given interval:

Proposition 2.15 ([CCL15, Lemma 8]). Let f : R → R≥0 be any non-negative locally integrable
function and { [ak, bk) }k∈K be any family of half open intervals (possibly uncountably many). Then
the following two properties are equivalent

a) f vanishes almost everywhere on [ak, bk) for every k ∈ K (separately!),

b) f vanishes almost everywhere on
⋃
k∈K [ak, bk).

Lp-Spaces and Right Constant Functions

Definition 2.16. Let J ⊆ R be any interval and p ≥ 1. Then we define the space

Lploc(J) := L
p
loc(J)/=a.e. and Lp(J) := L

p(J)/=a.e..

Moreover, we denote by Lploc(J,R≥0) := { [f ] ∈ Lploc(J) | 0 ≤a.e. f } the set of (equivalence classes of)
non-negative locally p-integrable functions.

Observation 2.17. Both Lploc(J) and Lp(J) are (infinite dimensional) real vector spaces (with pointwise
addition and scalar multiplication).
Note that Lploc(J) contains equivalence classes of functions, i.e. elements of the form [f : J → R].

To keep our notation simple we will usually omit the square brackets and even call elements of Lploc(J)
‘functions’ instead of ‘equivalence classes of functions’. Consequently, we will usually also refer to
Lploc(J) as the ‘set of locally p-integrable functions’. However, it is important to keep in mind that we
usually cannot evaluate such ‘functions’ at any individual point (as the value of “ [f ](θ)” would depend
on the specific representative chosen for the evaluation). Instead we may only talk about integrals of
f or (in)equalities of two such functions which hold almost everywhere.
We will, however, make one exception to this rule – whenever an equivalence class [f ] ∈ Lploc(J)

contains some representative g which is constant on some proper interval [a, b) then we will choose g
as the canonical function representing [f ] on this interval. In particular, evaluating [f ] on this interval
will be defined as evaluating g.

Definition 2.18. Let [f ] ∈ Lploc(J) and [a, b) ⊆ J be a proper interval. We say that [f ] is constant
on [a, b) if there exists some c ∈ R such that we have f(θ) = c for almost all θ ∈ [a, b)

Proposition 2.19. Let [f ] ∈ Lploc(J) and [a, b) ⊆ J such that [f ] is constant on [a, b) with constant
c ∈ R. Then there exists some representative g ∈ [f ] with g(θ) = c for all θ ∈ [a, b).

In the same way, we can define right-constant [f ] ∈ Lploc(J) for which we then also have a canonical
representative (which we can use for evaluation at individual points):

Definition 2.20. Let J ⊆ R be a right-open interval. Then [f ] ∈ Lploc(J) is called right-constant
if there exists a covering of J with proper intervals [a, b) such that [f ] is constant on each of those
intervals.

Proposition 2.21. If [f ] ∈ Lploc(J) is right-constant, then it has a unique right-constant representative
g ∈ [f ].
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2.3. Topology
We recall several standard concepts from topology – for a more detailed introduction we refer to
standard textbooks like e.g. [Jän84] or [AB06, Chapter 2, 5, 6].

Definition 2.22. Let X be a topological space. We then say that

• X is Hausdorff if for any two points x 6= y ∈ X there exist two disjoint open neighbourhoods
U, V ⊆ X of x and y, respectively.

• X is compact if every family of open sets (Ui)i∈I covering X has a finite subset covering X.

• X is sequentially compact if every sequence in X has a convergent subsequence.

• X is a topological vector space if X is also a real vector space and both addition and scalar
multiplication are continuous mappings.

• X is locally convex if it is a topological vector space and every neighbourhood of 0 ∈ X
contains a convex neighbourhood of 0.

Proposition 2.23 ([Jän84, Chapter I, Section §8, Note]). Limit points in Hausdorff spaces are unique.

Proposition 2.24 ([Jän84, Chapter I, Section §8, Lemma]). Compact subsets of Hausdorff spaces
are closed.

Proposition 2.25. Let X be a sequentially compact space, (xn) ∈ XN∗ a sequence and x ∈ X some
point. If every convergent subsequence of (xn) converges to x, then (xn) itself converges to x.

Proof. We show this via contraposition: So, let (xn) ∈ XN∗ be a sequence not converging to x. Then,
there exists some neighbourhood U of x such that there are infinitely many xn /∈ U . In particular, there
exists a subsequence (xnk)k∈N∗ with xnk ∈ X \U for all k ∈ N∗. Since X is sequentially compact, this
sequence must have a convergent subsequence (xnkj )j∈N∗ . And, as we have xnkj /∈ U for all elements
of this sequence, it has to converge to a point different to x – which proves the proposition.

Normed Vector Spaces

The topological spaces we use in this thesis will mostly be special types of topological vector spaces:

Definition 2.26. A (real) normed vector space is a (real) vector space V together with a norm
map ‖.‖ : V → R≥0 satisfying

• Positive definiteness: ‖x‖ = 0 ⇐⇒ x = 0 for all x ∈ V ,

• Absolute homogeneity: ‖αx‖ = |α| · ‖x‖ for all α ∈ R, x ∈ V and

• Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

We will consider two different topologies on such spaces: The first (most natural) one is the topology
directly induced by the norm which we will call the strong topology on (V, ‖.‖):

Definition 2.27. Let (V, ‖.‖) be a normed space, x ∈ V and α > 0. Then we denote by Bα(x) :=
{ y ∈ V | ‖x− y‖ < α } the open ball of radius α around x and by B̄α(x) := { y ∈ V | ‖x− y‖ ≤ α }
the closed ball of radius α around x.
We call the topology on (V, ‖.‖) induced by its open balls (as a base) its (strong) topology.

Definition 2.28. We call a normed space (V, ‖.‖) a Banach space if it is complete with respect to
the strong topology, i.e. every Cauchy sequence in (V, ‖.‖) converges.

In this thesis we will encounter three such Banach spaces:

• the real numbers R together with the absolute value |.| : R→ R≥0,
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• the set of continuous functions on a compact interval C(J) := { f : J → R | f continuous }
together with the uniform norm ‖.‖∞ : C(J)→ R≥0, f 7→ supθ∈J |f(θ)| and

• the set of p-integrable functions Lp(J) together with the p-norm ‖.‖p : Lp(J) → R, f 7→(∫
J
|f(ζ)|pdζ

)1/p.

Proposition 2.29 ([RF10, Chapter I, Theorem 17]). (R, |.|) is a Banach space.

Proposition 2.30 ([Con19, Chapter III, Example 1.6]). Let J ⊆ R be any compact interval. Then
(C(J), ‖.‖∞) is a Banach space.

Proposition 2.31 ([RF10, Chapter 7, Riesz–Fischer Theorem]). Let J ⊆ R be any compact interval
and p ≥ 1. Then (Lp(J), ‖.‖p) is a Banach space.

The other topology on a normed space (which we will call the weak topology) is the topology
induced by its dual space.

Definition 2.32. For any normed vector space (V, ‖.‖) we define its dual space (V ′, ‖.‖′) where V ′
is the set of continuous linear functions ϕ : V → R with the natural vector space structure and the
norm ‖.‖′ is defined by

‖ϕ‖′ := sup
‖x‖≤1

{ϕ(x) } for any ϕ ∈ V ′.

Definition 2.33. Let (V, ‖.‖) a normed space and V ′ its dual space. Then we call the topology
induced by the sets (as a subbase)

U(ϕ, x, ε) := { y ∈ V | |ϕ(x)− ϕ(y)| < ε } for ϕ ∈ V ′, x ∈ V, ε > 0

its weak topology.

Note that, since we now have two topologies on a normed space, we have to always ensure to
make clear to which topology we are referring to whenever we talk about subsets of those spaces or
continuous maps between them. Whenever there is any danger of confusion, we will therefore explicitly
say “weakly open”, “weakly compact”, . . . when referring to the respective property with respect to
the weak topology. For functions we will use e.g. “weak-strong” continuous to refer to a function
f : X → Y which is continuous with respect to the weak topology on X and the strong topology on
Y . For a sequence (xn)n converging weakly to some x we write xn

w−−−−→
n→∞

x.

Proposition 2.34 ([AB06, Section 6.1], [RF10, Chapter 14, Proposition 21]). Let X be a normed
space. Then it is a locally convex, Hausdorff topological vector space both with respect to the strong
and the weak topology on X.

Proposition 2.35 ([AB06, 6.34 Eberlein–Šmulian Theorem]). Let X be a normed space. Then a
subset K ⊆ X is weakly compact if and only if it is sequentially weakly compact.

Proposition 2.36 ([RF10, Chapter 8, Proposition 6]). Let p, q ∈ (1,∞) with 1
p + 1

q = 1. Then, a
sequence (fn) ∈ Lp(J)N0 converges weakly to some f ∈ Lp(J) if and only if we have

lim
n∈N0

∫
J

fn(ζ) · g(ζ)dζ =

∫
J

f(ζ) · g(ζ)dζ for all g ∈ Lq(J).

Proposition 2.37. Let p > 1, J ⊆ R some interval and (fn)n ∈ Lp(J)N0 a sequence of functions
converging weakly to some function f ∈ Lp(J). Furthermore, let g ∈ Lp(J) be another p-integrable
function and M ⊆ R some measurable subset. If fn|M ≤a.e. g|M holds for almost all n, then we also
have f |M ≤a.e. g|M .

Proof. This is an immediate consequence of Proposition 2.36: Assume, for contradiction, that f |M 6≤a.e.
g|M . Then there exists some measurable subset S ⊆ M with finite measure such that we have
f(ζ) > g(ζ) for all ζ ∈ S. Since 1S is certainly q-integrable this leads to the following contradiction∫

J

g(ζ) · 1S(ζ)dζ <

∫
J

f(ζ) · 1S(ζ)dζ
Prop. 2.36

= lim
n

∫
J

fn(ζ) · 1S(ζ)dζ ≤
∫
J

g(ζ) · 1S(ζ)dζ.
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Proposition 2.38 ([GHP22, Lemma A.1]). Let A,B ⊆ R be two subsets of real numbers, gn : A→ B
a sequence of functions converging uniformly to some function g : A→ B and fn : B → R another
sequence of functions converging uniformly to some continuous function f : B → R. Then the sequence
fn ◦ gn : A→ R converges pointwise to the function g ◦ f : A→ R.

For finite dimensional vector spaces the canonical mapping from itself to its double dual is always
an isomorphism. For infinite dimensional Banach spaces this need not be true anymore. If it is true,
such a space is called reflexive.

Definition 2.39. Let (V, ‖.‖) be a Banach space. (V, ‖.‖) is called reflexive if the canonical mapping
from V to its double dual V ′′

V → V ′′, x 7→ (V ′ → R, (f : V → R) 7→ f(x))

is surjective.

Proposition 2.40 ([RF10, Chapter 14, Proposition 20]). For p > 1 the space Lp(J) is a reflexive
Banach space and its dual can be identified with Lq(J) where q > 1 is chosen such that 1

p + 1
q = 1.

Proposition 2.41 ([Hun13, Corollary 7.32]). Let X be a reflexive Banach space. Then, any convex,
bounded and (strongly) closed subset K ⊆ X is weakly compact.

Product Spaces

We will often consider products of topological/normed spaces. These then become topological/normed
spaces in a natural way as well:

Definition 2.42. Let X,Y be two topological spaces. Then the product topology on X × Y is the
topology generated (as a base) by the sets U × V with U ⊆ X, V ⊆ Y open.
Let (X, ‖.‖X), (Y, ‖.‖Y ) be two normed spaces. Then the product norm on X × Y is defined by

‖.‖X×Y : X × Y → R≥0, (x, y) 7→ ‖x‖X + ‖y‖Y .

As we will only need finite products, all the relevant properties of those spaces easily carry over to
their product as well:

Proposition 2.43. Let X,Y be two topological spaces.

• If X and Y are Hausdorff, so is X × Y .

• If X and Y are (sequentially) compact, so is X × Y .

• If X and Y are locally convex, so is X × Y .

Now let (X, ‖.‖X), (Y, ‖.‖Y ) be two normed spaces. Then (X×Y, ‖.‖X×Y ) is a normed space. Moreover,
the following properties hold:

• The strong/weak topology on (X×Y, ‖.‖X×Y ) is the product topology of the strong/weak topologies
on (X, ‖.‖X) and (Y, ‖.‖Y ).

• If X and Y are Banach spaces, so is X × Y .

• If X and Y are reflexive Banach spaces, so is X × Y .
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Absolutely Continuous Functions

Definition 2.44. Let J ⊆ R be some interval. A function F : J → R is absolutely continuous if
for any ε > 0 there exists some δ > 0 such that

n∑
k=1

|bk − ak| < δ =⇒
n∑
k=1

|F (bk)− F (ak)| < ε

for every finite sequence of pairwise disjoint subintervals (ak, bk) ⊆ J .
We denote the set of all such functions by AC(J) and by AC↗(J) the set of all non-decreasing

absolutely continuous functions.

Observation 2.45. Absolute continuity is related as follows to the more standard types of continuity:

Lipschitz-continuous =⇒ absolutely continuous =⇒ uniformly continuous.

Observation 2.46. The set AC(J) with pointwise addition and scalar multiplication forms a real vector
space.

Proposition 2.47 ([BS20, Corollary 4.3.5], [Var65, Theorem 2]). Let F : [a, b]→ R be an absolutely
continuous function. Then F also has the following properties:

a) F is differentiable almost everywhere.

b) F maps null sets to null sets, i.e. for every set N ⊆ [a, b] we have

µ(N) = 0 =⇒ µ(F (N)) = 0.

In [CCL15] Cominetti, Correa and Larré showed a helpful characterisation of non-negativity for
absolutely continuous functions which we state here in slightly altered form:

Proposition 2.48. Let F : [a, b)→ R be any absolutely continuous function with a ∈ R, b ∈ R̃ and
F (a) ≥ 0. Then the following conditions are equivalent:

a) ∀θ ∈ [a, b) : F (θ) ≥ 0,

b) For almost all θ ∈ [a, b) we have F (θ) < 0 =⇒ ∂F (θ) ≥ 0.

c) For almost all θ ∈ [a, b) we have F (θ) ≤ 0 =⇒ ∂F (θ) = 0.

Proof. This is essentially the same statement as [CCL15, Lemma 9]. The only differences are our
assumption F (a) ≥ 0 instead of F (a) = 0 in [CCL15] and statement b) which is slightly stronger in
[CCL15] than here (F (θ) ≤ 0 instead of F (θ) < 0). However, it is easy to see that the same proof also
applies to our version of this lemma.

The Fundamental Theorem of Calculus

Proposition 2.49 (Fundamental Theorem of Calculus). Let J be a non-trivial interval and c ∈ J
some fixed point in this interval. Then we have:

L1
loc(J)× R

L1
loc(J,R≥0)× R

AC(J)

AC↗(J)

∫̃
1 : 1

∂̃

∫̃
1 : 1

∂̃

⊆⊆⊆
⊆⊆⊆
⊆

⊆⊆⊆
⊆⊆⊆
⊆
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where the two mappings are defined by

˜∫
: L1

loc(J)× R→ AC(J), (f, C) 7→

(
J → R, θ 7→

∫ θ

c

f(ζ)dζ + C

)

and
∂̃ : AC(J)→ L1

loc(J), F 7→ (∂F, F (c)).

Proof. This follows directly from [BS20, Theorem 4.4.2] and [BS20, Corollary 4.4.4] together with
Proposition 2.48.

Because of the above stated fundamental theorem of calculus, we will usually use capital letters to
refer to absolutely continuous functions. We then use corresponding lower case letters to refer to their
derivative.

Proposition 2.50. Let J = [a, b] be a compact interval and p > 1. Then the mapping∫
: Lp(J)→ C(J), f 7→ (θ 7→

∫ θ

a

f(ζ)dζ)

is sequentially weak-strong continuous.

Proof. The integration mapping is a compact operator from Lp(J) → C(J) (cf. [BS20, Example
6.9.4(iv)]). According to [Con19, Chapter VI, Proposition 3.3] any such operator is completely
continuous, i.e. maps weakly convergent sequences to strongly convergent sequences.

We can now also state three useful rules for evaluating integrals: The chain rule, integration by
parts and the change of variable formula:

Proposition 2.51 ([SV69, Corollary 4]). Let G : [a, b] → [c, d] be a monotone function and F :
[c, d]→ R an absolutely continuous function. Then, F ◦G is differentiable almost everywhere and we
have

∂(F ◦G)(θ) = ∂F (G(θ)) · ∂G(θ)

for almost all θ ∈ [a, b].

Proposition 2.52 ([BS20, Corollary 4.4.5]). Let F,G : [a, b] → R be two absolutely continuous
functions. Then we have∫ b

a

∂F (ζ) ·G(ζ)dζ = [F (ζ)G(ζ)]
b
a −

∫ b

a

F (ζ) · ∂G(ζ)dζ,

where we use the notation [F (ζ)G(ζ)]
b
a := F (b)G(b)− F (a)G(a).

Proposition 2.53 ([SV69, Corollaries 6 and 7]). Let G : [a, b]→ [c, d] be absolutely continuous and
f ∈ L1([c, d]). If G is monotone or f is bounded, then we have∫ G(b)

G(a)

f(ζ)dζ =

∫ b

a

f(G(ζ)) · ∂G(ζ)dζ.

Additionally, we can use the fundamental theorem of calculus to give several sufficient conditions for
non-decreasing, absolutely continuous functions for being strictly increasing in terms of its derivative:

Proposition 2.54. Let F : J → R be an absolutely continuous, non-decreasing function with derivative
f : J → R almost everywhere. Then we have

a) F is not strictly increasing at θ ∈ J if and only if there exists some ε > 0 such that [θ− ε, θ] ⊆ J
and we have f(ζ) = 0 for almost all ζ ∈ [θ − ε, θ].

b) If F is differentiable at θ and ∂F (θ) > 0 then F strictly increases at θ.
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c) For almost all θ with f(θ) > 0 we have that F strictly increases at θ.

d) Given two times ξ < ζ with F (ξ) < F (ζ) then there must be a subset J ⊆ [ξ, ζ] of positive
measure such that F strictly increases at all times θ ∈ J .

Proof. a): If there exists some interval [θ − ε, θ] on which f is zero almost everywhere then we have
F (θ) = F (θ − ε) +

∫ θ
θ−ε f(ζ)dζ = F (θ − ε) + 0. Thus, F is not strictly increasing at θ.

If, on the other hand, F is not strictly increasing at θ, then there must be some ϑ < θ with
F (ϑ) = F (θ). Since F is non-decreasing, this implies that it is constant on [ϑ, θ] and we have
f(ζ) = 0 for almost all ζ ∈ [ϑ, θ].

b): This follows directly from a).

c): This follows from b) since we have f(θ) = ∂F (θ) for almost all θ.

d): Since
∫ θ
ϑ
f(ζ)dζ = F (θ)− F (ϑ) > 0, there must be a subset S ⊆ [ϑ, θ] of positive measure with

f(ζ) > 0 for all ζ ∈ S. By c) F is strictly increasing for almost all these ζ ∈ S.

2.4. Two General Existence-Results
The two following results will be key ingredients for our existence results for IDE.

A Fixed Point Theorem for Infinite Dimensional Spaces

Fixed point theorems like Brouwer’s and Kakutani’s Fixed Point Theorem are a standard tool for
showing existence of equilibria in game theory. We will make use here of a version of Kakutani’s Fixed
Point Theorem which also applies to infinite dimensional topological vector spaces.

Definition 2.55. Let X be a topological space and Γ : X → 2X a correspondence (i.e. a function
from a set to its power set). We denote the graph of Γ by

graph(Γ) := { (x, y) ∈ X ×X | y ∈ Γ(x) } .

We say that Γ has a closed graph if graph(Γ) ⊆ X ×X is a closed subset.

Theorem 2.56 (Kakutani–Fan–Glicksberg, [AB06, Corollary 17.55]). Let X be a locally convex
Haussdorff space, K ⊆ X a non-empty, convex and compact subset and Γ : K → 2K a correspondence
with closed graph and non-empty convex values.

Then the set of fixed points {x ∈ K | x ∈ Γ(x) } of Γ is compact and non-empty.

Zorn’s Lemma

Another important tool for our existence proofs for IDE will be Zorn’s Lemma. We follow here the
presentation in [nLa23a; nLa23b]:

Definition 2.57. A binary relation � on a set X is called

• reflexive if it satisfies x � x for all x ∈ X,

• transitive if x � y ∧ y � z =⇒ x � z for all x, y, z ∈ X,

• antisymmetric if x � y ∧ y � x =⇒ x = y for all x, y ∈ X,

• total if we have x � y ∨ y � x for all x, y ∈ X,

• a preorder if it is reflexive and transitive and

• a total order if it is reflexive, transitive, antisymmetric and total.

Given a preorder � on X we call (X,�) a preordered set and
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• x ∈ X maximal if it satisfies y � x for all y ∈ X with x � y,

• Y ⊆ X a chain if the restriction of � to Y is a total order and

• x ∈ X an upper bound to Y ⊆ X if it satisfies y � x for all y ∈ Y .

Lemma 2.58 (Zorn’s Lemma). Let (X,�) be a preordered set where every chain has an upper bound.
Then X has a maximal element (with respect to �).

This version of Zorn’s Lemma is from [nLa23b] where they also provide a proof, i.e. show that it
follows from the Axiom of Choice ([nLa23b, Theorem 2.3]).

2.5. Graph Theory and Optimization
We recall some basic definitions and results from graph theory and optimization. For a more detailed
introduction we refer to standard text books on these topics like e.g. [Jun12; Jun14] where we also
take most of our notations from.

Basic Definitions from Graph Theory

Definition 2.59. A (directed) graph G = (V (G), E(G)) consists

• A finite set V (G) of nodes and

• a finite set E(G) ⊆ V (G)× V (G) \ { (v, v) | v ∈ V } of edges.

For any node v ∈ V we then denote by δ+
G(v) := { e = (v, w) ∈ E(G) } the set of all edges leaving

v and by δ−G(v) := { e = (w, v) ∈ E(G) } the set of all edges entering v. We say that e is an edge
from v to w if e ∈ δ+

G(v) ∩ δ−G(w). We also extend this notation to subsets of nodes by setting
δ+
G(W ) := { e = (w, v) ∈ E(G) | w ∈W, v /∈W } and δ−G(W ) := { e = (v, w) ∈ E(G) | v /∈W,w ∈W }
for any subset W ⊆ V .
Whenever the underlying graph G is clear from the context, we may omit the argument/index G

from all the notation introduced in this definition. Moreover, we usually write vw instead of (v, w) to
refer to an edge from v to w.

Note that our definition only allows simple graphs, i.e. does not allow parallel edges or loops. This
is, however, only a notational convenience (in particular it allows us to uniquely identify edges by their
head and tail nodes). All the results from this thesis also hold for multigraphs (and can be shown
using the same proofs).

v1

v2

v3

v4

v5

v6

v7

v1

v2

v3

v4

v5

v6

v7

Figure 2: An example graph showcasing the various definition from graph theory: The thick nodes and
edges form an induced subgraph induced by the node setW = { v1, v2, v3, v4 }. This subgraph
G[W ] is an acyclic graph and v4 ≺ v3 ≺ v2 ≺ v1 defines a topological order on its nodes.
The blue arrow indicates the v4, v1-path v4v2, v2v1, the red arrow indicates the v7, v6-walk
v7v5, v5v4, v4v3, v3v5, v5v4, v4v6 and the green arrow indicates the cycle v7v5, v5v4, v4v6, v6v7.

Definition 2.60. A graph G′ is a subgraph of another graph G if we have V (G′) ⊆ V (G) and
E(G′) ⊆ E(G′). We then denote this by G′ ⊆ G.
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Definition 2.61. For any node subset W ⊆ V (G) the induced subgraph on W is the graph G[W ]
defined by

• the node set V (G[W ]) := W and

• the edge set E(G[W ]) := E(G)[W ] := { vw ∈ E(G) | v, w ∈W }

In other words, the induced subgraph on W is the maximal subgraph of G using W as its set of nodes.

Definition 2.62. Let G = (V,E) be a graph, n ∈ N0 and a finite sequence of edges

p := (e1, e2, . . . , en) = (v1w1, v2w2, . . . , vnwn) ∈ En.

Then

• p is a walk if it consists of consecutive edges, i.e. we have wk = vk+1 for all k ∈ [max {n− 1, 0 }],

• p is a path if it is a walk and it visits no node twice, i.e. we have vk 6= v` for all k 6= ` ∈ [n] and
v1 6= wn (if n ≥ 1),

• p is a cycle if it is a walk of length at least 2, ends at its start node and visits no node in
between twice, i.e. we have n ≥ 2, vk 6= v` for all k 6= ` ∈ [n] and wn = v1.

We call n the length of p. If p = (v1w1, v2w2, . . . , vnwn) is a walk/path, we call v1 the start node of
p, wn its end node and p itself a v1, wn-walk/v1, wn-path. We consider the empty path () a v, v-path
for any node v ∈ V .
For any two node subsets U,W ⊆ V a U,W -walk/U,W -path is any v, w-walk/v, w-path with

v ∈ U , w ∈W . We will also use v,W -path as shorthand for { v } ,W -path.
Similar to our simplified notation for edges we will usually omit the parentheses when referring

paths/walks, i.e. we write e1, e2, . . . , en instead of (e1, e2, . . . , en). This also allows us to write the
concatenation of two walks p and q as just p, q.

Definition 2.63. A graph is called acyclic if it contains no cycles.

Definition 2.64. A binary relation ≺ on V is a topological order on a graph G = (V,E) if � is a
total order and ≺ satisfies

vw ∈ E =⇒ v ≺ w

for all edges vw ∈ E, i.e. edges always go “upwards” (with respect to the topological order).

Proposition 2.65 ([Jun12, Theorem 2.6.3]). A graph admits a topological order if and only if it is
acyclic.

Node Labels in Graphs with Edge Costs

In this thesis we will usually consider graphs with additional data. In particular, we will usually have
some cost γe ∈ R associated with each edge e ∈ E and some set T ⊆ V of terminal nodes. We are
then interested in the cheapest paths from any node in the network to any terminal node.

Definition 2.66. Let G = (V,E) be a graph with edge costs γ = (γe)e∈E ∈ RE and a set of terminal
nodes T ⊆ V . We then define node labels λv ∈ R̃ (with respect to γ) by setting

λv := inf { γp | p a v, T -path } ,

where γp :=
∑
e∈p γe denotes the cost of a path p. We say that a v, T -path p is efficient (with

respect to γ) if γp = λv and that an edge e = vw ∈ E is efficient (with respect to γ) if it satisfies
λv ≥ γe + λw. Finally, we denote by

V † := { v ∈ V | @ v, T -path }

the set of dead-end nodes, i.e. nodes from which there exists no path towards any terminal node.
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It is well-known (cf. e.g. [Jun12, Theorem 3.5.3]) that for graphs without cycles of non-positive cost
the node labels can be equivalently defined by Bellman’s equations:

λv =

{
0, if v ∈ T
inf { γe + λw | e = vw ∈ δ+(v) } , else

. (1)

For graphs with zero cost cycles these equation do not necessarily have a unique solution anymore.
However, as long as there are no cycles of negative cost, the node labels are still the unique maximal
solution to (1) (cf. [Mar22, Section 2.2]). We collect these facts together with several other helpful
properties of such node labels in the following proposition:

Proposition 2.67. Let G = (V,E) be a graph with edge costs γ ∈ RE, terminal nodes T ⊆ V and
corresponding node labels λ ∈ R̃V . Then we have:

a) λv =∞ ⇐⇒ v ∈ V †.

b) λv <∞ if and only if there exists at least one efficient v, T -path.

c) ∀t ∈ T : λt ≤ 0.

d) The first edge of an efficient path is always efficient.

e) Any non-terminal node with at least one outgoing edge also has an efficient outgoing edge.

If we have γc ≥ 0 for all cycles c, then the node labels also satisfy:

f) ∀e = vw ∈ E : λv ≤ γe + λw.

g) An edge e = vw ∈ E is efficient if and only if λv = γe + λw.

h) γc = 0 for every cycle c consisting only of efficient edges.

i) Every edge on an efficient path is efficient itself.

If, additionally, we have γp ≥ 0 for any T, T -path p, then the node labels further satisfy:

j) ∀t ∈ T : λt = 0.

k) γp = 0 for every efficient T, T -path p.

l) A v, T -path is efficient if and only if all its edges are efficient.

m) The vector (λv)v ∈ R̃V is the unique maximal solution to (1).

If, additionally, we have γc > 0 for any cycle c, then the node labels also satisfy:

n) There exists no cycle consisting only of efficient edges.

o) The vector (λv)v ∈ R̃V is the unique solution to (1).

Proof. a),b): Since γe is always finite, we have λv =∞ if and only if we take the infimum over the
empty set, i.e. if there are no paths from v to any terminal node. If, on the other hand, this set
is non-empty, the infimum is attained since the set of v, T -paths is always finite.

c): For any terminal node t ∈ T the trivial path is a t, T -path with cost 0.

d): Let p = e, p′ be an efficient path and e = vw its first edge. Then, p′ is a w, T -path and, therefore,

λv = γp = γe + γp′ ≥ γe + λw.
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e): We consider two cases: If there exists at least one v, T -path, then there is also a (non-trivial)
efficient path and, thus, an efficient edge leaving v by d). If there is no v, T -path, then take any
edge e = vw ∈ δ+(v). Then, there can also be no w, T -path and, thus, we have

λv
a)
=∞ = γe +∞ a)

= γe + λw.

f): If λw =∞, then the inequality trivially holds. Otherwise, let p be any efficient w, T -path (which
exists by b)). Then e, p is a v, T -walk and, thus, contains a v, T -path p′ differing from e, p in at
most a cycle. Since such a cycle has non-negative cost, this implies

λv ≤ γp′ ≤ γe,p = γe + γp = γe + λw.

g): This follows directly from f).

h): Let c be any cycle consisting only of efficient edges. Then we have

0 ≤ γc =
∑
e∈c

γe
g)
=

∑
e=vw∈c

(λv − λw) = 0.

i): Let p be an efficient v, T -path and e = v′w′ ∈ p some edge on this path, i.e. p = p1, e, p2 for some
subpaths p1 and p2. Then a) and b) imply that there exists some efficient v′, T -path p′. As
p1, p

′ is a v, T -walk, we can turn it into a v, T -path p̃ by removing cycles. Since all cycles have
non-negative cost, this implies

γp1,p′ ≥ γp̃ ≥ γp = γp1,e,p2

and, therefore, γp′ ≥ γe,p2
. This now gives us

λv′ = γp′ ≥ γe,p2
= γe + γp2

≥ γe + λw′

which proves that e = v′w′ is efficient.

j): This follows directly from c) together with our additional assumption that all T, T -paths have
non-negative cost.

k): Let p be an efficient t, t′-path with t, t′ ∈ T . Then we have

γp = λt
j)
= 0.

l): Let p be a v, t-path with t ∈ T consisting only of efficient edges. Then we have

γp =
∑
e∈p

γe
g)
=

∑
e=v′w′∈p

(λv′ − λw′) = λv − λt
j)
= λv.

Thus, p is efficient. The other direction already holds due to i).

m): We first show that (λv)v is indeed a solution to (1): Take any node v ∈ V . If v ∈ T , then we have
λv = 0 by j). If v /∈ T and δ+(v) = ∅, then we have λv =∞ by a) while the right side of (1) is
also clearly infinite. Finally, in the remaining case e) guarantees the existence of an efficient
edge e = vw ∈ δ+(v) and we have λv = γe + λw by g). At the same time we have λv ≤ γe + λw′

for any edge e = vw′ ∈ δ+(v) by f). Together, this shows

λv = min { γe + λw | e = vw ∈ δ+(v) } .

Now, to show that (λv)v is maximal among all solutions to (1), let (λ′v)v be any solution to (1).

Then, for any node v without any v, T -path we have λ′v ≤ ∞
a)
= λv. For any other node v let p

be an efficient v, T -path (which exists by b)) and denote this path by p = v1w1, v2w2, . . . , vkwk.
with v1 = v and wk ∈ T . Since (λ′v)v is a solution to (1), we then have

λ′v ≤ λ′v2
+ γv1w1

≤ λ′v3
+ γv2w2

+ γv1w1
≤ · · · ≤ λ′vk +

∑
e∈p

γe
j)
= 0 + γp = λv.
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n): This follows directly from our additional assumption together with h).

o): We already know from m) that (λv)v is a solution to (1). So, it remains to show that it is also
the only solution. We assume for contradiction that there exists another, different solution (λ′v).
Since, according to m), (λv)v is the maximal solution, this means there is some node v0 ∈ V
with λ′v0

< λv0
. We now consider three different cases for this node v0 and show that they all

lead to a contradiction:
1. Case: v0 ∈ T : Then (1) together with j) imply λ′v0

= 0 = λv0 , which is a contradiction to
λ′v0

< λv0 .
2. Case: v0 /∈ T and δ+(v0) = ∅: Here, (1) gives us λ′v0

=∞ which is an immediate con-
tradiction to λ′v0

< λv0
.

3. Case: v0 /∈ T and δ+(v0) 6= ∅: In this case (1) guarantees the existence of some edge
v0v1 with λ′v0

= γv0v1
+ λ′v1

. For the label at node v1 we now get

λ′v1
= λ′v0

− γv0v1 < λv0 − γv0v1

m)
= inf { γe + λw | e = v0w ∈ δ+(v0) } − γv0v1

≤ γv0v1 + λv1 − γv0v1 = λv1

Thus, we can now make the same case distinction for node v1 as we just did for node v0

resulting either in a contradiction (in the first two cases) or in the existence of another
node v2 with λ′v1

= γv1v2 + λ′v2
and λ′v2

< λv2 . Continuing on this way we get a sequence
of nodes v0, v1, . . . , vk ending either with a contradiction for some node vk in one of the
first two cases or a cycle (i.e. vk = v0). In the latter case we have found a cycle c for
which we have

γc =
∑
e∈c

γe =

k−1∑
j=0

γvjvj+1
=

k−1∑
j=0

(
λ′j − λ′j+1

)
= λ′0 − λ′k = 0,

a contradiction to the assumption that all cycles have strictly positive cost.

Tools from Optimization

A generic optimization problem is given by some set S of feasible solutions and an objective function
f : S → R. The goal is then to find (local) minima/maxima of f over S, i.e. a feasible point x ∈ S with
f(x) = min/max { f(x′) | x′ ∈ S } (or f(x) = min/max { f(x′) | x′ ∈ U } for some neighbourhood U ⊆ S
of x).
If S is compact and f continuous, then such a solution is guaranteed to exist:

Proposition 2.68 ([AB06, Corollary 2.35]). Let f : S → R be a continuous function on a non-empty
compact set. Then f attains its minimum and its maximum.

The KKT-conditions discovered by Karush, Kuhn and Tucker provide necessary conditions for
(locally) optimal points of certain classes of optimization problems. We will use them for problems of
the form

min f(x)

s.t.Ax ≤ a
Bx = b

x ∈ Rn

(MIN)

where f : Rn → R is a function, A ∈ Rk×n, B ∈ Rm×n two matrices and a ∈ Rk, b ∈ Rm two vectors.
The KKT-conditions for such a problem are then as follows:

Proposition 2.69 ([Jun14, Satz 6.1.5]). Let x ∈ S be a (local) minimum of (MIN) such that f is
differentiable at x. Then there exist vectors λ ∈ Rk and µ ∈ Rm such that

∇f(x) + λ>A+ µ>B = 0, λ>(Ax− a) = 0 and λ ≥ 0.

Here, ∇f(x) denotes the gradient of f at x, i.e. the row-vector (∂xif(x))i∈[n].
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2.6. Complexity Theory
For analysing the quality of both IDE themselves and algorithms for computing them, we will make
use of two helpful tools from complexity theory: The Landau notation to describe asymptotic bounds
and the concept of NP-hardness to be able to express formally that certain problems are difficult. For
a more formal introduction to these topics we refer to [GJ79; Pap95; CLRS22].

Definition 2.70. Let f : Rn≥0 → R≥0 be any non-negative function. Then we denote by

O(f) :=
{
g : Rn → R

∣∣ ∃N,C ∈ N0 : ∀x ∈ Rn≥0 : x1, . . . , xn ≥ N =⇒ g(x) ≤ C · f(x)
}

the set of functions which are asymptotically upper bounded by f and by

Ω(f) :=
{
g : Rn → R

∣∣ ∃N, c ∈ N0 : ∀x ∈ Rn≥0 : x1, . . . , xn ≥ N =⇒ c · g(x) ≥ f(x)
}

the set of functions which are asymptotically lower bounded by f .

Note, that for n = 1 this reduces to the standard definitions for the Landau notation (cf. e.g.
[CLRS22, Section 3.2]). For the case of multiple variables, however, this is just one of several different
and incompatible definitions of O and Ω which are in use – see [How08].

A decision problem consists of a class of instances (problems) and a question which for each of the
instances has either “yes” or “no” as the answer. An example would be

Acyclic Graph:

Input: A directed graph G

Question: Is G acyclic?

The class P contains all decision problems for which there exists a deterministic polynomial time
algorithm, i.e. an algorithm which for any instance I correctly identifies whether the answer is “yes” or
“no” and has a runtime in O(p(〈I〉)) for some polynomial p (where 〈I〉 stands for the encoding size of
the instance I).
The class NP contains all decision problem for which there exists a non-deterministic polynomial

time algorithm, i.e. an algorithm as in the above case of the class P but which additionally is allowed
to use an oracle which for any “yes”-instance provides a polynomial size proof for the answer being
“yes”.

Clearly, the class P is contained in the class NP. However, whether it is a proper inclusion or whether
the two classes are actually the same, is still an open problem: The famous “P=NP?” problem which
is one of the six unsolved millennium problems (cf. [Bom+06]).

Definition 2.71. Let Π1 and Π2 be two decision problems. We say that Π1 is harder than Π2 (written
Π1 ≥ Π2) if there exists a transformation T from instances of Π1 to instances of Π2 such that for any
instance I of Π1 we have

• I is a “yes”-instance for Π1 if and only if T (I) is a “yes”-instance for Π2 and

• there is an algorithm which constructs T (I) in polynomial time (in the encoding size of I).

A decision problem Π is NP-hard if we have Π ≥ Π′ for all decision problems Π′ in NP. It is
NP-complete if it is NP-hard and itself contained in NP.

Proposition 2.72 ([CLRS22, Lemma 34.8]). Let Π be any decision problem. If we have Π ≥ Π′ for
some NP-complete problem Π′, then Π is NP-hard.

A famous NP-complete decision problem is satisfiability ([GJ79, Theorem 2.1]): Here we consider a
boolean formula in conjunctive normal form, i.e. a formula which is a conjunction of clauses which in
turn are disjunctions of literals (i.e. variables x or their negations ¬x). An example for such a formula
is then

(x1 ∨ x3 ∨ ¬x4) ∧ (¬x1) ∧ (¬x3 ∨ ¬x2) ∧ (x2 ∨ x3). (2)
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Such a formula is said to be satisfiable if there exists an interpretation of the variables such that
the formula becomes true, i.e. a function β : {x1, . . . , xn } → {True,False } such that every clause
contains at least one literal which is true. For example, the formula in (2) is satisfiable as the
interpretation β(x1) = β(x3) = β(x4) = False, β(x2) = True makes the whole formula true.

A more restricted version of this problem is 3Sat where we only allow formulas where every clause
contains exactly three literals:

3Sat:

Input: A boolean formula φ in conjunctive normal form where every clause has exactly three
literals

Question: Is φ satisfiable?

Proposition 2.73 ([GJ79, Theorem 3.1]). 3Sat is NP-complete.
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3. Model
Using the formalisms introduced in [KS11; CCL15] we describe in this chapter the model we will then
study in this thesis. This description consists of two main parts: First, we have a physical model
describing how flow propagates throughout the network (which, in turn, is mostly governed by the
flow dynamics on individual edges). Second, we have a behavioural model which describes how the
individual particles making up the flow choose their route through the network.

3.1. Physical Model
In this section we formally define the physical flow model. This model is based on the deterministic
queuing model introduced by Vickrey but extended to multi-commodity flows and whole networks.
On our way of describing this model we will also show five fundamental properties of the edge flow
dynamics induced by this model:

Existence and Uniqueness: For every inflow rate there exists a unique outflow rate such that together
they form an edge flow satisfying the constraints of our model (Corollaries 3.21 and 3.43).

Continuity: The resulting mapping from inflow to outflow rates as well as to current travel times is
continuous with respect to appropriately chosen topologies on the respective function spaces
(Corollaries 3.45 and 3.46). This will be important for our general existence result in Chapter 4.

Structure preservation Right-constant inflow rates lead to a right constant outflow rates (Proposi-
tion 3.22 and Corollary 3.44). This property will be particularly important when we want to
construct flows, i.e. in Chapter 5, but also for the more specialized existence results in Chapter 4.

Monotonicity: A larger (cumulative) inflow can only lead to a larger or equal (cumulative) outflow
(Corollary 3.23). This will be helpful when we have to show that a whole range of flows satisfies
some given bounds in one of our gadget constructions in Chapter 6.

No idling: Flow cannot stay on an edge for too long, i.e. whenever there is flow on an edge, flow of
that volume will leave the edge “soon” after (Corollary 3.24). This will be the basic ingredient
for showing upper bounds on the termination time of flows in Chapter 6.

We refer to [Koc12, Chapters 3 and 7] for a much more extensive study of both the physical model
used here as well as more general models for flow dynamics (for the single-commodity case).

3.1.1. Anonymous Edge Flows

Let e be an edge characterised by a free flow travel time τe ∈ R≥0 and a capacity νe ∈ R>0. The
free flow travel time denotes the time it takes a particle to traverse edge e if there is no congestion.
The capacity is the maximal rate at which particles may travel along this edge (without causing
congestion). We start by considering flows on such an edge where all particles are interchangeable, i.e.
we cannot distinguish between different particles and, in particular, all particles belong to the same
commodity.

Definition 3.1. An anonymous edge flow fe = (f+
e , f

−
e ) on an edge e consists of two functions

f+
e , f

−
e ∈ L1

loc(R≥0,R≥0) where f+
e (θ) denotes the (edge) inflow rate into edge e at time θ and

f−e (θ) denotes the (edge) outflow rate from edge e at time θ.

For any such edge flow defined by in- and outflow functions we can then also define corresponding
cumulative flow functions denoting for every time θ the volume of flow which has entered/left edge e
up to that time θ.

Definition 3.2. For any anonymous edge flow the associated cumulative anonymous edge flow
Fe = (F+

e , F
−
e ) is defined by:

• the cumulative inflow F+
e : R≥0 → R≥0, θ 7→ F+

e (θ) :=
∫ θ

0
f+
e (ζ)dζ and
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• the cumulative outflow F−e : R≥0 → R≥0, θ 7→ F−e (θ) :=
∫ θ

0
f−e (ζ)dζ.

Moreover, we define the edge load at any time θ ∈ R≥0 by F∆
e (θ) := F+

e (θ)− F−e (θ).

An important property of these cumulative flow functions is that they are non-decreasing and
absolutely continuous. Moreover, their derivatives are again the underlying flow rates (almost
everywhere). This follows directly from Proposition 2.49:

Proposition 3.3. The cumulative in- and outflow are non-decreasing, absolutely continuous functions
satisfying

∂F+
e (θ) = f+

e (θ) and ∂F−e (θ) = f−e (θ)

for almost all θ ∈ R≥0.

Remark 3.4. According to Proposition 2.49 there is actually a one-to-one correspondence between
edge flow rates and cumulative edge flow functions. Thus, one could equivalently use the cumulative
versions as the definition for an edge flow. In fact, this is the approach taken e.g. in [Koc12; HFY13;
OSK23]. Note that in [HFY13; OSK23] absolute continuity is replaced by left- or right-continuity
making their model more general as it then allows for flow of positive measure to enter an edge at a
single time. However, since we will not allow waiting at nodes, this extension will not be relevant for
our model and we can just freely switch between the two different view points.
Now, given an edge flow fe we would like to determine the current travel time on edge e (as a

function over time). A natural way of accomplishing that would be to look at a flow particle entering
the edge at time θ and then measuring the time until it leaves the edge again. However, since we
cannot distinguish individual particles, this is not possible. What we can do instead is to take the
cumulative inflow at time θ (i.e. F+

e (θ)) and then measure the time until a flow of equal volume has
left the edge. Assuming that all particles are treated equally and, in particular, enter and leave the
edge in accordance with the first-in first-out (FIFO) principle this then gives us the actual travel time
experienced by all particles that entered the edge at a specific time.
In order to make this into a formal definition, we also need to be able to say at which points in

time flow actually enters an edge (under a given edge flow fe). Since the flow rates are, formally,
equivalence classes of functions and, therefore, only defined up to changes on any set of measure zero,
it would not be well defined to say that flow enters edge e at time θ if f+

e (θ) > 0. Instead, we will
use the cumulative inflow function here (we can then use Proposition 2.54 to translate between this
definition and properties of the inflow rate):

Definition 3.5. We say that flow enters edge e at time θ > 0 if F+
e is strictly increasing at θ, i.e.

if for all θ′ < θ we have F+
e (θ′) < F+

e (θ).

Remark 3.6. Note that this definition is very similarly to that of the monotonicity set of F+
e used

in [Koc12, Definition 2.24] for essentially the same purpose. Namely, we have

Monotonicity Set of F+
e = { θ ∈ R≥0 | flow enters f at θ } ∪

{
max { θ ≥ 0 | F+

e (θ) = F+
e (0) }

}
.

Definition 3.7. For any time θ at which flow enters edge e we define the experienced current
travel time on edge e by

Ĉe(θ) := inf { ζ ≥ −θ | F−e (θ + ζ) ≥ F+
e (θ) } .

Up to now, there is no connection between edge-flows on an edge e and the edge’s free flow time
and capacity. Thus, as our next step we want to define feasible or “physically possible” flows: At a
minimum, an edge flow should respect the edge’s capacity and free flow travel time, i.e. it may not
leave an edge at a higher rate than νe and not earlier than τe time units after it entered the edge.
These two conditions can be formalised as follows:

Definition 3.8. An anonymous edge flow fe satisfies weak flow conservation until ξ ∈ R̃≥0 if

F−e (θ + τe) ≤ F+
e (θ) for all θ < ξ (3)

and strong flow conservation until ξ if

F−e (θ + τe) = F+
e (θ) for all θ < ξ.
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Definition 3.9. An anonymous edge flow fe respects the capacity of edge e until ξ ∈ R̃≥0 if

f−e (θ + τe) ≤ νe for almost all θ < ξ. (4)

While, in the end, we usually want these (and all further) properties of dynamic flows to hold
for all times (or almost all times in case of constraints on the flow rates) we will make these
definitions more general in the sense that we always define properties “until some time ξ ∈ R̃≥0”.
This will be especially helpful in Chapter 4, where we will construct dynamic flows with certain
properties by starting with an arbitrary flow (which trivially satisfies the desired property until
ξ = 0) and then iteratively adjust it in such a way that it satisfies the property until some later
and later time. A property which is satisfied until ξ =∞ holds for all time. In this case we will
usually drop the “until ξ” and just say that the given flow satisfies this property.

Also note that, as we can already see in the two definitions above, a property up to some time ξ
will typically impose some restriction on the edge inflow during [0, ξ) but during [τe, ξ + τe) on
the edge outflow. In particular, constraint (4) does not restrict the outflow rate during [0, τe).
However, for any ξ > 0 constraint (3) already ensures that the outflow rate is zero during this
time interval.

By combining the previous two definitions we get two main ways of modelling congestion: Respecting
capacity and strong flow conservation or respecting capacity and weak flow conservation. In the first
case we effectively limit the inflow into an edge and, thus, congestion happens before the edge, e.g. on
the previous node. This is the model used by Ford and Fulkerson when they first introduced dynamic
flows in [FF58]. In the second case we allow flow to enter the edge at any rate and limit the rate at
which it can leave the edge instead. Hence, in this model congestion happens on the edge. This is the
approach proposed by Vickrey in [Vic69] and which we will follow here as well.
More precisely, we will handle congestion by a point queue at the beginning of the edge, i.e. flow

particles currently on an edge can only be in one of two states: Waiting in the queue at the beginning
of the edge or travelling on the edge itself without experiencing any further congestion delays.

Definition 3.10. For any anonymous edge flow fe we define the queue length function of an
edge e by

Qe : R≥0 → R, θ 7→ Qe(θ) := F+
e (θ)− F−e (θ + τe). (5)

We say that the queue of edge e starts empty if Qe(0) = 0.

Note, that even though the notation makes no reference to the underlying edge flow fe, the queue
length does of course, depend on this flow. In the rare occasions where it is not obvious from the
context which flow the queue length (or other flow dependent objects we will define later on) are
derived from, we will make this explicit by a superscript in the notation. E.g. if there are two edge
flows fe and ge, we may use Qfe and Qge to refer to the queue length functions of fe and ge, respectively.

Remark 3.11. One could, of course, also place the queue at the end of the edge (by defining Qe(θ) :=
F+
e (θ− τe)−F−e (θ)). For the physical flow model this would not make any difference except for a time

shift in the notation. The same is true for the behavioural model in a full information setting (and,
in fact, both conventions are in use there). In the current information setting, however, this choice
makes a subtle but important difference. Namely, it determines when other agents in the network get
informed about congestion: Already when particles enter an edge or only once they reach the end
of that edge. Placing the queue at the beginning of the edge, thus, gives the agents in the network
earlier access to congestion information about that edge.
Note that, if we are allowed to use edges of zero free flow travel time, then we can always model

queues at the end of edges using two consecutive edges with queues at the beginning and vice versa.

Proposition 3.12. Let fe be an anonymous edge flow and ξ ∈ R̃≥0 some positive time. Then the
following properties hold:
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a) The queue length function is absolutely continuous.

b) The queue on edge e starts empty if and only if f−e |[0,τe] =a.e. 0.

c) The queue is non-negative during [0, ξ) if and only if fe satisfies weak flow conservation until ξ.

d) If fe satisfies weak flow conservation until some time ξ > 0, then the queue on edge e starts
empty.

Proof. All four properties follow directly from the definitions (and Proposition 3.3 in case of the first
one).

Using the queue length function we can now formally state Vickrey’s deterministic queuing model,
i.e. a queue only forms if the edge inflow exceeds the edge’s capacity and whenever there is a queue,
then particles leave this queue (and start traversing the edge itself) at a rate of νe:

Definition 3.13. A queue operates at capacity until ξ ∈ R̃≥0 if it satisfies

f−e (θ + τe) =

{
νe, if Qe(θ) > 0

min { f+
e (θ), νe } , else

for almost all θ < ξ (6)

and, if ξ > 0, starts empty2.

Intuitively, it should be clear that a queue operating at capacity leads to a travel time of Qe(θ)νe
+ τe

(waiting time in the queue plus traversal time for the edge itself) for particles entering the edge at
time θ. This leads to the following definitions of expected current travel and exit times:

Definition 3.14. For any edge flow fe we define the (expected) current travel time by

Ce : R≥0 → R, θ 7→ Qe(θ)

νe
+ τe.

and the (expected) current exit time by

Te : R≥0 → R, θ 7→ θ + Ce(θ) = θ +
Qe(θ)

νe
+ τe.

Observation 3.15. The current travel time and current exit time function are both absolutely continuous
as as linear combinations of absolutely continuous functions.

We collect some standard properties of the current exit time function, which can also be found in
similar form in many other works on Vickrey flows (e.g. [CCL15; Ser20; Mar22]).

Proposition 3.16. Let fe be an anonymous edge flow which respects capacity until ξ ∈ R≥0. Then
the following properties hold:

a) The current exit time function is non-decreasing on [0, ξ].

b) We have ∂Te(θ) = 0 =⇒ f+
e (θ) = 0 for almost all θ ∈ [0, ξ).

c) If, additionally, fe satisfies weak flow conservation until ξ, then it also satisfies the following
flow conservation condition:

F−e (Te(θ)) ≤ F+
e (θ) (7)

for every θ < ξ with Te(θ) < ξ + τe.

2Excluding the case ξ = 0 here is only a notational convenience as it ensures that any edge flow has a queue operating
at capacity until time ξ = 0.
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Intuitive explanation: Property a) essentially states that the (expected) current travel time of
an edge flow respecting capacity satisfies the following weak first-in first-out (FIFO) condition:
Entering the edge later never leads to an earlier (expected) exit time. On the other hand, it
is easy to see (cf. Example 3.17) that such a flow need not obey strict FIFO, i.e. entering an
edge later can lead to the same exit time. This is in contrast to other flow models like linear
edge delays where an even stronger FIFO condition is satisfied, namely that there exists some
constant γe > 0 such that one always has Te(θ2)−Te(θ1) ≥ γe(θ2− θ1) for all θ2 ≥ θ1 (cf. [ZM00,
Theorem 5.1]).

Together with b) we do, however, get strict FIFO for our model at least for all times where
flow enters the edge.

Finally, property c) states that the flow is not faster than the expected travel time (whenever
there is proper inflow). Note here that, even though (7) looks like a stronger condition than weak
flow conservation, it does not imply weak flow conservation (even under the assumption that the
flow respects capacity) – see Example 3.18.

Proof. All three properties follow from the definitions by mostly straight forward computations:

a) Take any two times θ ≤ θ′ < ξ. Then we have

Te(θ) = θ +
Qe(θ)

νe
+ τe ≤ θ +

∫ θ′
θ
f−e (ζ + τe)dζ +Qe(θ

′)

νe
+ τe

(4)
≤ θ +

νe(θ
′ − θ) +Qe(θ

′)

νe
+ τe = θ + (θ′ − θ) +

Qe(θ
′)

νe
+ τe = Te(θ

′).

b) Since F+
e and F−e are both absolutely continuous, it suffices to show the claim for only those θ < ξ

where we have ∂F+
e (θ) = f+

e (θ) and ∂F−e (θ + τe) = f−e (θ + τ). Now, for almost all such times
we have

∂Te(θ) = 1 + ∂Qe(θ)
νe

= 1 +
f+
e (θ)−f−e (θ+τe)

νe

(4)
≥ 1 +

f+
e (θ)−νe
νe

= 1
νe
· f+
e (θ).

Hence, for almost all such times θ we have ∂Te(θ) = 0 =⇒ f+
e (θ) = 0.

c) Let θ < ξ be any time with Te(θ) < ξ + τe. Then we have:

F−e (Te(θ)) = F−e (θ + τe) +

∫ θ+
Qe(θ)
νe

θ

f−e (ζ + τe)dζ
(3),(4)
≤ F−e (θ + τe) +

∫ θ+
Qe(θ)
νe

θ

νedζ

= F−e (θ + τe) +Qe(θ) = F+
e (θ).

Example 3.17. Consider an edge with τe = νe = 1 and an edge flow defined by f+
e := 2 · 1[0,1] and

f−e := 1[1,3]. This flow clearly satisfies weak flow conservation and respects capacity. During [1, 2] the
(expected) current exit time is constant, e.g. entering edge e at any point in this interval leads to the
same exit time. Note, however, that under the given flow no flow actually enters during this interval
(as guaranteed by Proposition 3.16b)).

Example 3.18. Consider an edge with τe = νe = 1 and an edge flow defined by f+
e := 1[0,1] and

f−e := 1[1,∞) (cf. Figure 3). This flow clearly violates weak flow conservation after time θ = 1. However,
constraint (7) is satisfied as we have

Te(θ) = θ + Qe(θ)
νe

+ τe = θ + F+
e (θ)− F−e (θ + 1) + 1 =

{
θ + θ − θ + 1 = θ + 1, for θ ≤ 1

θ + 1− θ + 1 = 2, for θ > 1

and, therefore,

F−e (Te(θ)) =

{
F−e (θ + 1) = F+

e (θ), for θ ≤ 1

F−e (2) = 1 = F+
e (θ), for θ > 1.
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Figure 3: An edge flow on an edge with τe = νe = 1 which satisfies (7) but not weak flow conservation.

We now want to show that for edge flows with a queue operating at capacity expected and experienced
current travel time do, in fact, coincide (whenever they are both defined). On our way to proving this,
we will also show the equivalence of several alternative definitions of the deterministic queueing model
used in literature (e.g. [HFY13; CCL15; Mar22]):

Proposition 3.19. Let fe = (f+
e , f

−
e ) be an anonymous edge flow and ξ ∈ R̃≥0 some time. Then the

following properties are equivalent:

a) The queue of edge e operates at capacity until ξ.

b) The queue of edge e satisfies

∂Qe(θ) =

{
f+
e (θ)− νe, if Qe(θ) > 0

max { f+
e (θ)− νe, 0 } , else

for almost all θ < ξ (8)

and, if ξ > 0, starts empty.

c) The flow satisfies weak flow conservation and respects capacity on edge e until ξ and the
cumulative outflow satisfies for every θ < ξ the following equation

F−e (θ + τe) = F+
e (θ̄) + (θ − θ̄)νe, (9)

where θ̄ := max { θ′ ≤ θ | Qe(θ′) = 0 } is the last time before θ with empty queue.

d) The cumulative edge outflow is completely determined by the cumulative edge inflow in the
following way for every θ < ξ:

F−e (θ + τe) = min
θ′≤θ

(
F+
e (θ′) + (θ − θ′)νe

)
(10)

e) The flow satisfies weak flow conservation, respects the capacity until ξ and satisfies

F−e (Te(θ)) = F+
e (θ) for all θ < ξ with Te(θ) < ξ + τe. (11)

f) The flow satisfies weak flow conservation and respects the capacity on edge e until ξ and for
every θ < ξ with Te(θ) < ξ + τe where flow enters the edge we have Ce(θ) = Ĉe(θ).

Intuitive explanation: Property f) shows that experienced and expected current travel time
coincide for flows with queues operating at capacity. Moreover, it states that the following three
bounds completely determine the dynamics of an edge flow: Weak flow conservation gives a
lower bound of τe on the travel time, (11) gives an upper bound of τe + Qe(θ)

νe
and respecting the

capacity enforces the creation of a queue if the inflow rate exceeds νe. This characterisation is
essentially the same as in [CCL15, Proposition 1].

Property e) is a reformulation of f) and – in the form stated in Proposition 3.40b) – often used
for multi-commodity flows (e.g. [CCL15, eq. (25)]).
The characterisation in d) is particularly helpful for showing that for queues operating at

capacity the outflow is completely determined by the inflow. This is exactly how Cominetti,
Correa and Larré use this formulation (stated in the form Qe(θ) = maxθ′≤θ

∫ θ
θ′
f+
e (ζ)− νedζ) in

[CCL15, Section 2.2] and how we will use it in Corollary 3.21. In [HFY13] this is used directly as
definition for the flow dynamics in the Vickrey model (cf. [HFY13, constraint (4.14)]).
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Markl showed in [Mar22, section 3.4] that the equivalence of characterisation d) to the constraint
that the queue operates at capacity even holds in the more general case of time-varying capacities.
He also introduced characterisation c).
Statement b) is just a restatement of the constraints of queues operating at capacity as a

differential equation using the derivative of the defining equation for the queue length functions,
i.e. ∂Qe(θ) = f+

e (θ)− f−e (θ + τe).

Proof. Proofs for most of the implications contained in this proposition can be found in [CCL15] and
[Ser20, Lemma 3.1]. We will prove them here by showing a) ⇐⇒ b) =⇒ c) =⇒ d) =⇒ e) =⇒
f) =⇒ a).

a) ⇐⇒ b): Here we follow the proof of [Ser20, Lemma 3.1 (vii)]: Since both F+
e and F−e are

absolutely continuous they are differentiable with ∂F+
e (θ) = f+

e (θ) and ∂F−e (θ+τe) = f−e (θ+τe)
for almost all θ < ξ. For all those θ we then have by the definition of the queue length function

∂Qe(θ)
(5)
= ∂F+

e (θ)− ∂F−e (θ + τe) = f+
e (θ)− f−e (θ + τe).

This now immediately implies the equivalence of the constraints (6) and (8).

b) =⇒ c): If ξ = 0, there is nothing to show. Otherwise we have Qe(0) = 0 since the queue starts
empty and ∂Qe(θ) = max { f+

e (θ)− νe, 0 } ≥ 0 for all times θ < ξ with Qe(θ) ≤ 0 from (8).
Thus, we can apply Proposition 2.48 to deduce that the queue is non-negative during [0, ξ)
which, by Proposition 3.12, implies that weak flow conservation holds until ξ. Moreover, (8) also
implies

f−e (θ + τe) = ∂F−e (θ + τe) = ∂F+
e (θ)− ∂Qe(θ) = f+

e (θ)− ∂Qe(θ)
(8)
≤ νe

for almost all θ < ξ, i.e. that the flow respects capacity until ξ. Finally, in order to show (9) we
first note that the time θ̄ := max { θ′ ≤ θ | Qe(θ′) = 0 } is well defined for any fixed θ < ξ since
the queue length function is continuous and starts at 0. As we have Qe(ζ) > 0 for all ζ ∈ (θ̄, θ)
we then get

F−e (θ + τe) = F+
e (θ)−Qe(θ) = F+

e (θ)−Qe(θ̄)−
∫ θ

θ̄

∂Qe(ζ)dζ

(8)
= F+

e (θ)− 0−
∫ θ

θ̄

(
f+
e (ζ)− νe

)
dζ = F+

e (θ)−
∫ θ

θ̄

f+
e (ζ)dζ + (θ − θ̄)νe

= F+
e (θ̄) + (θ − θ̄)νe.

c) =⇒ d): First, note that the minimum is well defined since F+
e is continuous. From (9) we directly

get
F−e (θ + τe) = F+

e (θ̄) + (θ̄ − θ)νe ≥ min
θ′≤θ

(
F+
e (θ′) + (θ − θ′)νe

)
.

At the same time, respecting capacity and weak flow conservation imply that for every θ′ ≤ θ
we have

F−e (θ + τe) = F−e (θ′ + τe) +

∫ θ

θ′
f−e (ζ + τe)dζ

(4)
≤ F−e (θ′ + τe) +

∫ θ

θ′
νedζ

= F+
e (θ′)−Qe(θ′) + (θ − θ′)νe

(3)
≤ F+

e (θ′)− 0 + (θ − θ′)νe.

Together, this shows that (10) holds.

d) =⇒ e): Choosing θ′ = θ in (10) gives us F−e (θ+ τe) ≤ F+
e (θ), i.e. weak flow conservation. As F−e

is absolutely continuous, it is differentiable for almost all θ and satisfies ∂F−e (θ+τe) = f−e (θ+τe).
We will show that fe respects the capacity for all those θ: So, fix such a time θ < ξ and define
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θ̂ := arg minθ′≤θ (F+
e (θ′) + (θ − θ′)νe). Then, using (10), we have F−e (θ+τe) = F+

e (θ̂)+(θ− θ̂)νe
and

F−e (θ + ε+ τe) = min
θ′≤θ+ε

(
F+
e (θ′) + (θ + ε− θ′)νe

)
≤ F+

e (θ̂) + (θ + ε− θ̂)νe

for any ε < ξ − θ. Thus, we get

f−e (θ + τe) = ∂F−e (θ + τe) = lim
ε↘0

1

ε

(
F−e (θ + ε+ τe)− F−e (θ + τe)

)
≤ lim
ε↘0

1

ε

(
F+
e (θ̂) + (θ + ε− θ̂)νe − (F+

e (θ̂) + (θ − θ̂)νe)
)

= lim
ε↘0

1

ε
ενe = νe,

i.e. the flow respects the capacity for all θ < ξ with ∂F−e (θ + τe) = f−e (θ + τe) which is almost
all.
Finally, in order to show (11), take any θ < ξ with Te(θ) < ξ + τe or, equivalently, θ+ Qe(θ)

νe
< ξ

and observe that for any θ′ ∈ [θ, θ + Qe(θ)
νe

) we have

F+
e (θ′) + (θ − θ′)νe ≥ F+

e (θ) + (θ − θ′)νe = F−e (θ + τe) +Qe(θ) + (θ − θ′)νe
≥ F−e (θ + τe) +Qe(θ)− Qe(θ)

νe
νe = F−e (θ + τe).

Together with (10) this gives us

F−e (θ + τe) = min
θ′≤θ+Qe(θ)

νe

(
F+
e (θ′) + (θ − θ′)νe

)
. (12)

Using (10) again, now for θ + Qe(θ)
νe

, we obtain (11) as follows:

F−e (Te(θ)) = F−e

(
θ + Qe(θ)

νe
+ τe

)
(10)
= min

θ′≤θ+Qe(θ)
νe

(
F+
e (θ′) +

(
θ + Qe(θ)

νe
− θ′

)
νe

)
= min
θ′≤θ+Qe(θ)

νe

(
F+
e (θ′) + (θ − θ′)νe

)
+Qe(θ)

(12)
= F−e (θ + τe) +Qe(θ) = F+

e (θ).

e) =⇒ f): Let 0 < θ < ξ be a time with Te(θ) < ξ + τe where flow enters the edge, i.e. where F+
e

is strictly increasing. Since we have F−e (θ + Ce(θ)) = F−e (Te(θ)) = F+
e (θ), we immediately get

Ĉe(θ) ≤ Ce(θ). Now assume for contradiction that Ĉe(θ) < Ce(θ). Due to the continuity of Ce
this implies that there exists some θ′ < θ with Ĉe(θ) + θ ≤ Ce(θ′) + θ′. Using the fact that both
F−e and Te are non-decreasing gives us

F+
e (θ′)

(11)
= F−e (θ′ + Ce(θ

′)) ≥ F−e (θ + Ĉe(θ)) ≥ F+
e (θ).

This implies that F+
e is constant on [θ′, θ] (since F+

e is non-decreasing as well) which is a
contradiction to F+

e being strictly increasing at θ.

f) =⇒ a): By Proposition 3.12 weak flow conservation already implies that the queue starts empty.
So, it remains for us to show that constraint (6) holds. We will do this by following the approach
taken in the second half of the proof of [CCL15, Proposition 1]: We start by defining the set
Q+ := { θ < ξ | Qe(θ) > 0 } of all times with non-empty queue. We now have to show that
(i) for almost all θ ∈ Q+ we have f−e (θ + τe) = νe and
(ii) for almost all θ ∈ [0, ξ) \Q+ we have f−e (θ + τe) = min { f+

e (θ), νe }.
For (ii) we can apply Proposition 2.48 to the queue length function on [0, ξ) (since we know that
this function is absolutely continuous, the queue starts empty and is non-negative due to weak
flow conservation). Thus, for almost all θ ∈ [0, ξ) \Q+ we have

0
Prop. 2.48c)

= ∂Qe(θ) = ∂F+
e (θ)− ∂F−e (θ + τe) = f+

e (θ)− f−e (θ + τe).
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Together with the fact that the flow respects the edge capacity this implies f−e (θ+ τe) = f+
e (θ) =

min { f+
e (θ), νe } for almost all such θ.

For (i) we denote by W (θ) := [θ, θ +Ce(θ)− τe) the current expected waiting period of particles
entering the queue at any time θ < ξ. Furthermore, we define the set

I+ :=
{
θ < ξ

∣∣ F+
e is strictly increasing at θ and Te(θ) < ξ + τe

}
as the set of all points where Ce(θ) = Ĉe(θ) holds according to f).

We will now first show that (i) holds for almost all times in W (θ) for θ ∈ I+ and then that those
W (θ) cover all of Q+. By Proposition 2.15 this suffices to prove that (i) holds for almost all
times in Q+.

Claim 1. For any θ ∈ I+ we have f−e (ζ + τe)− νe = 0 for almost all ζ ∈W (θ).

Proof. For θ ∈ I+ we have W (θ) ⊆ [0, ξ) and, therefore, f−e (ζ + τe) − νe ≤ 0 holds almost
everywhere on W (θ) since the flow respects the capacity until ξ. Thus, the claim is equivalent to
showing that

∫
W (θ)

f−e (ζ+τe)−νedζ ≥ 0. Using the definition of Ĉe(θ) as well as the assumption

that Ĉe(θ)
f)
= Ce(θ) we can show this as follows:∫

W (θ)

(
f−e (ζ + τe)− νe

)
dζ =

∫ θ+Ce(θ)−τe

θ

(
f−e (ζ + τe)− νe

)
dζ

=

∫ θ+Ce(θ)−τe

θ

f−e (ζ + τe)dζ − (Ce(θ)− τe)νe

= F−e (θ + Ĉe(θ))− F−e (θ + τe)− (Ce(θ)− τe)νe
≥ F+

e (θ)− F−e (θ + τe)− Qe(θ)
νe
· νe = Qe(θ)−Qe(θ) = 0. �

Claim 2. We have Q+ ⊆
⋃
θ∈I+ W (θ).

Proof. Take any θ+ ∈ Q+. Since we have Te(0) = τe < τe + ξ as well as Te(θ+) = θ+ + Qe(θ
+)

νe
+

τe > θ+ + τe and Te is continuous, there exists some θ′ ≤ θ+ with

θ+ + τe < Te(θ
′) < ξ + τe.

For this time θ′ we clearly have F+
e (θ′) ≥ Qe(θ′) > 0 and, thus, Proposition 2.54d) guarantees

the existence of some time θ ≤ θ′ at which flow entered the edge. Therefore,

θ̄ := sup { θ ≤ θ′ | flow enters e at θ } > −∞

and F+
e (θ̄) = F+

e (θ′), again by Proposition 2.54d). Moreover, there exists some θ̂ ≤ θ̄ such that
flow enters edge e at θ̂ and we have

F+
e (θ̄)− F+

e (θ̂) < Qe(θ
′)− (θ+ − θ′)νe (13)

(the latter being possible since F+
e is continuous and we chose θ′ such that θ+ < θ′ + Qe(θ

′)
νe

).
See Figure 4 for an overview of how all the different times defined here relate to each other.
Note that, in particular, we have Te(θ̂) ≤ Te(θ

′) < ξ + τe since the flow respects the capacity
until ξ and, therefore, Te is non-decreasing on [0, ξ) by Proposition 3.16a). This implies θ̂ ∈ I+

and, thus, we have Ce(θ̂) = Ĉe(θ̂) by f).

This now implies

F+
e (θ̂) = F+

e (θ̄)− (F+
e (θ̄)− F+

e (θ̂)) = F+
e (θ′)− (F+

e (θ̄)− F+
e (θ̂))

= Qe(θ
′) + F−e (θ′ + τe)− (F+

e (θ̄)− F+
e (θ̂))

(13)
> F−e (θ′ + τe) + (θ+ − θ′)νe

39



θ+θ′θ̄θ̂I+3 ξ

θ+ + Qe(θ
+)

νe
θ′ + Qe(θ

′)
νe

no inflow< ε

[ )
W (θ̂)

Figure 4: An overview over the different times used in the proof of Claim 2 as well as their relationships

to each other. Note that in general ξ could also be to the right of θ+ + Qe(θ
+)

νe
but the case

shown here is the “more difficult one”. The general idea of the proof is as follows: We want
to find some θ ∈ I+ such that θ+ ∈W (θ). As I+ only contains times θ with θ + Qe(θ)

νe
< ξ

(and this might not be the case at θ+) we first go to the left until we reach a time θ′ where
this is the case (but we still have θ+ < θ′+ Qe(θ

′)
νe

to ensure that θ+ ∈W (θ′) is still possible).
As, additionally, I+ only contains times at which there is inflow into e we the go further to
the left until we reach such a point θ̂ which is very close to the upper bound of such points
θ̄. We then conclude the proof by showing that it is not possible that all flow which had
entered the edge by time θ̂ has left it by time θ+ + τe.

(∗)
≥ F−e (θ′ + τe) +

∫ θ+

θ′
f−e (ζ + τe)dζ = F−e (θ+ + τe),

i.e. F−e (θ̂ + θ+ + τe − θ̂) < F+
e (θ̂). Here, for (∗) we used the fact that the flow respects the

capacity until ξ and we have θ+ < ξ. Thus, we have

Ce(θ̂) = Ĉe(θ̂) > θ+ + τe − θ̂,

which implies θ+ < θ̂ + Ce(θ̂)− τe and, finally θ+ ∈W (θ̂). �

Using these two claims together with Proposition 2.15 now directly implies that f−e (θ + τe)− νe
vanishes almost everywhere on Q+. Thus, the queue operates at capacity until ξ.

We can now use these different characterisations to deduce several key properties of the edge
dynamics induced by the Vickrey point queue model:
Uniqueness follows directly from Proposition 3.19d) as every outflow has to satisfy (10). For

existence it remains to show that a function defined by (10) is guaranteed to be a cumulative outflow,
i.e. it is absolutely continuous and non-decreasing. This will be a direct consequence of the following
lemma:

Lemma 3.20. Let g : R≥0 → R be any continuous non-decreasing function and define

h : R≥0 → R, θ 7→ min
θ′≤θ

(g(θ′) + (θ − θ′)ν))

for some constant ν > 0. Then h is non-decreasing and Lipschitz-continuous.

Proof. First, note that h is well-defined as g is continuous and [0, θ] is compact for any θ ∈ R≥0.
We now show that h is non-decreasing: For any a ≤ b we have

h(b) = min
θ′≤b

(g(θ′) + (b− θ′)ν) = min

{
min
θ′≤a

(g(θ′) + (b− θ′)ν) , min
θ′∈[a,b]

(g(θ′) + (b− θ′)ν)

}
≥ min

{
min
θ′≤a

(g(θ′) + (a− θ′)ν) , min
θ′∈[a,b]

g(θ′)

}
(∗)
≥ min

{
min
θ′≤a

(g(θ′) + (a− θ′)ν) , g(a) + (a− a)ν

}
= min
θ′≤a

(g(θ′) + (a− θ′)ν) = h(a),
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where (∗) holds since g is non-decreasing.
Now, using this monotonicity of h we can show Lipschitz-continuity as follows: Again, take a ≤ b

and choose θa ∈ [0, a] such that h(a) = g(θa) + (a− θa)ν. Then we have

|h(b)− h(a)| = h(b)− h(a) = min
θ′≤b

(g(θ′) + (b− θ′)ν)− (g(θa) + (a− θa)ν)

≤ g(θa) + (b− θa)ν − g(θa)− (a− θa)ν = (b− a)ν = ν |b− a| .

Corollary 3.21. For any locally integrable function g+
e : R≥0 → R≥0 there exists a locally integrable

function g−e : R≥0 → R≥0 such that (g+
e , g

−
e ) is an edge flow that operates at capacity.

Furthermore, if (f+
e , f

−
e ) and (g+

e , g
−
e ) are two edge flows operating at capacity until ξ ∈ R̃≥0 and

ξ′ ≤ ξ some time with Te(ξ′) ≥ ξ + τe then

f+
e

∣∣
[0,ξ′)

=a.e. g
+
e

∣∣
[0,ξ′)

=⇒ f−e
∣∣
[0,ξ+τe)

=a.e. g
−
e

∣∣
[0,ξ+τe)

.

Proof. For the first part, we define G+
e : R≥0 → R≥0, θ 7→

∫ θ
0
g+
e (ζ)dζ which is a well defined absolutely

continuous non-decreasing function. We then define another function G−e : R≥0 → R≥0 by setting

G−e (θ) :=

{
0, if θ ≤ τe
minθ′≤θ−τe (G+

e (θ′) + (θ − θ′)νe) , else
.

By Lemma 3.20 and the fact that G+
e (0) = 0 this function is absolutely continuous and non-decreasing.

Thus, it has a locally integrable derivative g−e (θ) := ∂G−e (θ) almost everywhere. Hence, (g+
e , g

−
e ) is an

anonymous edge flow that clearly satisfies Proposition 3.19d) and, therefore, operates at capacity.
For the second part we first note that we have F+

e (θ) = G+
e (θ) for all θ ∈ [0, ξ′) and, thus,

Proposition 3.19d) implies F−e (θ) = G−e (θ) for all θ ∈ [0, ξ′+ τe). Now, for all times θ ∈ [ξ′, ξ) we have

Qfe (θ) ≥ Qfe (ξ′)−
∫ θ

ξ′
f−e (ζ + τe)dζ

(4)
≥ Qfe (ξ′)− (θ − ξ′)νe

> Qfe (ξ′)− (ξ − ξ′)νe = νe ·
(
ξ′ +

Qfe (ξ′)
νe

+ τe − ξ − τe
)

= νe ·
(
T fe (ξ′)− (ξ + τe)

)
≥ 0

and, with the same proof, Qge(θ) > 0. Thus, we have

θ̄ := max { θ′ ≤ θ | Qfe (θ′) = 0 } = max { θ′ ≤ θ | Qge(θ′) = 0 } ≤ ξ′

and, therefore, Proposition 3.19c) implies

F−e (θ + τe)
Prop. 3.19c)

= F+
e (θ̄) + (θ − θ̄)νe = G+

e (θ̄) + (θ − θ̄)νe
Prop. 3.19c)

= G−e (θ + τe)

for all such θ ∈ [ξ′, ξ).

For the case of right-constant inflow rates Proposition 3.19c) even allows us to explicitly describe
the corresponding outflow rate for an edge flow operating at capacity (see Figure 5 for a visual
representation of this proposition):

Proposition 3.22. Let (f+
e , f

−
e ) be an edge flow operating at capacity until ξ and 0 ≤ a < b ≤ ξ

times with Te(b) ≤ ξ + τe. If f+
e is constant on [a, b) then f−e is right-constant on [Te(a), Te(b)) with

at most one jump. More precisely:

• If Qe(a) = 0 or f+
e (a) ≥ νe then

Qe(θ) = Qe(a) + (θ − a) max { f+
e (a)− νe, 0 } for all θ ∈ [a, b) and

f−e (θ) = min { f+
e (a), νe } for all θ ∈ [Te(a), Te(b)).
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• If Qe(a) > 0 and f+
e (a) < νe then

Qe(θ) =

{
Qe(a) + (θ − a)(f+

e (a)− νe) for all θ ∈ [a, c)

0 for all θ ∈ [c, b)
and

f−e (θ) =

{
νe for all θ ∈ [Te(a), Te(c))

f+
e (a) for all θ ∈ [Te(c), Te(b))

where c := min { a+ Qe(a)

νe−f+
e (a)

, b } is the break point of the queue length function.

a Te(a) b Te(b)

νe

f+
e (a)

f+
e

f−e

Qe

θ

a Te(a) c Te(c) b Te(b)

νe

f+
e (a)

f+
e

f−e

Qe

θ

Figure 5: Visualization for the outflow rate of an edge with queue operating at capacity for a constant
inflow rate according to the two cases in Proposition 3.22.

Proof. We show this by a case distinction on whether the queue is empty or not at time a and whether
the inflow rate is smaller or larger than the capacity. In each case we first show during which parts of
the relevant time interval the queue can or cannot be empty which allows us to derive the outflow
rate from Proposition 3.19c). This then, in turn, gives us the exact form of the queue length function.

1. Case: Qe(a) = 0, f+
e (a) ≤ νe: Here, for any θ ∈ [a, b) we have

θ̄ := max { θ′ ≤ θ | Qe(θ′) = 0 } ≥ a

and, thus,

Qe(θ) = F+
e (θ)− F−e (θ + τe)

(9)
= F+

e (θ)−
(
F+
e (θ̄) + (θ − θ̄)νe

)
=

∫ θ

θ̄

f+
e (ζ)dζ − (θ − θ̄)νe ≤

∫ θ

θ̄

νedζ − (θ − θ̄)νe = 0.

This already shows Qe(θ) = 0 = Qe(a) + (θ − a) ·max { f+
e (a)− νe, 0 } for all θ ∈ [a, b) as well

as Te(a) = a+ τe and Te(b) = b+ τe.

Using Proposition 3.19c) once more, this gives us

F−e (θ + τe)
(9)
= F+

e (θ) = F+
e (a) +

∫ θ

a

f+
e (ζ)dζ = F+

e (a) + (θ − a)f+
e (a)

for all θ ∈ [a, b) and, therefore, f−e (θ + τe) = ∂F−e (θ + τe) = f+
e (a) = min { f+

e (a), ν − e } for
almost all θ ∈ [a, b).
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2. Case: Qe(a) = 0, f+
e (a) > νe: For any θ ∈ (a, b) we have

Qe(θ) = Qe(a) +

∫ θ

a

f+
e (ζ)dζ −

∫ θ

a

f−e (ζ + τe)dζ
(4)
≥ 0 + (θ − a)f+

e (a)− (θ − a)νe > 0.

Furthermore, for any θ ∈ [b, Te(b)− τe) we also have

Qe(θ) ≥ Qe(b)−
∫ θ

b

f−e (ζ + τe)dζ
(4)
≥ Qe(b)− (θ − b)νe

> Qe(b)− (Te(b)− τe − b)νe = Qe(b)−
Qe(b)

νe
νe = 0.

Thus, we have θ̄ = a for all θ ∈ [a, Te(b)− τe). Hence, we can apply Proposition 3.19c) to obtain

F−e (θ + τe)
(9)
= F+

e (a) + (θ − a)νe

for all θ ∈ [a, Te(b)− τe) and, therefore, f−e (θ + τe) = ∂F−e (θ + τe) = νe = min { f+
e (a), ν − e }

for almost all θ ∈ [a, Te(b)− τe) ⊇ [Te(a)− τe, Te(b)− τe).

3. Case: Qe(a) > 0, f+
e (a) ≥ νe: For any θ ∈ (a, b) we have

Qe(θ) = Qe(a) +

∫ θ

a

f+
e (ζ)dζ −

∫ θ

a

f−e (ζ + τe)dζ

(4)
≥ Qe(a) + (θ − a)f+

e (a)− (θ − a)νe ≥ Qe(a) > 0.

Furthermore, for any θ ∈ [b, Te(b) − τe) we also have Qe(θ) > 0 by the same proof as in the
previous case. Thus, we have θ̄ = ā ≤ a for all θ ∈ [a, Te(b) − τe). We can now, once more,
apply Proposition 3.19c) to get

F−e (θ + τe)
(9)
= F+

e (ā) + (θ − ā)νe

for all θ ∈ [a, Te(b)− τe) and, therefore, f−e (θ + τe) = ∂F−e (θ + τe) = νe = min { f+
e (a), ν − e }

for almost all θ ∈ [a, Te(b)− τe) ⊇ [Te(a)− τe, Te(b)− τe).

4. Case: Qe(a) > 0, f+
e (a) < νe: For any θ ∈ [a, c) we have

Qe(θ) = Qe(a) +

∫ θ

a

f+
e (ζ)dζ −

∫ θ

a

f−e (ζ + τe)dζ

(4)
≥ Qe(a) + (θ − a)f+

e (a)− (θ − a)νe = Qe(a) > 0.

As in previous cases we also get Qe(θ) > 0 for all θ ∈ [c, Te(c)− τe). Thus, we have θ̄ = ā ≤ a
for all θ ∈ [a, Te(c)− τe). Applying Proposition 3.19c) then gives us

F−e (θ + τe)
(9)
= F+

e (ā) + (θ − ā)νe

for all θ ∈ [a, Te(c) − τe) and, therefore, f−e (θ + τe) = ∂F−e (θ + τe) = νe for almost all
θ ∈ [a, Te(c)− τe). If c = b we are done. Otherwise, we have

Qe(c) = Qe(a) +

∫ c

a

f+
e (ζ)dζ −

∫ c

a

f−e (ζ + τe)dζ = Qe(a) + (c− a)f+
e (a)− (c− a)νe

= Qe(a) + (c− a)(f+
e (a)− νe) = Qe(a) +

Qe(a)

νe − f+
e (a)

(f+
e (a)− νe) = 0.

Thus, for the remaining interval [c, b) we can just apply case 1 in order to obtain f−e (θ + τe) =
f+
e (c) = f+

e (a) for almost all θ ∈ [c, Te(b)− τe) = [Te(c)− τe, Te(b)− τe).
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Finally, we see that in all cases the queue length function has exactly the form given in the proposition
on [a, b).

A consequence of Proposition 3.19d) is that flow dynamics of an edge flow with a queue operating
at capacity are monotone in the following sense:

Corollary 3.23. Let fe, ge be two edge flows with queues operating at capacity until some time
ξ ∈ R̃≥0 and satisfying F+

e (θ) ≤ G+
e (θ) for all θ < ξ. Then they also satisfy F−e (θ + τe) ≤ G−e (θ + τe)

for all θ < ξ.

Proof. This essentially follows from Proposition 3.19d) by a direct computation: For any θ < ξ choose
θ̃ ≤ θ such that G−e (θ + τe) = G+

e (θ̃) + (θ − θ̃)νe. Then we have

F−e (θ + τe)
Prop. 3.19d)

= min
θ′≤θ

(
F+
e (θ′) + (θ − θ′)νe

)
≤ F+

e (θ̃) + (θ − θ̃)νe

≤ G+
e (θ̃) + (θ − θ̃)νe = G−e (θ + τe)

Finally, Proposition 3.19e) gives us an upper bound on how long it can take for flow on an edge
with a queue operating at capacity to leave that edge. Namely, all flow that has entered the edge by
some time θ will have left the edge by time Te(θ). However, we can also use Proposition 3.19 to derive
a finer upper bound which also provides us a lower bound on how much of this flow has left the edge
at any time between θ + τe and Te(θ).

Corollary 3.24. For any edge flow fe operating at capacity until some time ξ, any time θ < ξ and
all values x ∈ [0, F∆

e (θ)] with θ + x
νe
< ξ we have

F−e

(
θ + x

νe
+ τe

)
− F−e (θ) ≥ x.

Intuitive explanation: This corollary can be read as stating that the following is the worst
possible case for upper bounding the time it can take before flow currently on an edge actually
leaves the edge: At time θ all flow currently on edge e is actually in its queue. Since the queue
operates at capacity, this flow will then immediately start to leave the queue at a rate of νe and
start to leave the edge τe time units later at the same rate.
And while it is not possible to actually achieve this worst case (since that would require all

flow to enter the edge at once at time θ), it still shows that the bound given here is tight unless
we have any bounds on the rate at which flow starts at the tail node of edge e.

Proof. We distinguish two cases:

1. Case: x ≥ Qe(θ): Here we can first use the monotonicity of F−e and then directly apply
Proposition 3.19e) to obtain

F−e (θ + x
νe

+ τe) ≥ F−e (θ + Qe(θ)
νe

+ τe) = F−e (Te(θ))
(11)
= F+

e (θ).

This then implies

F−e (θ + x
νe

+ τe)− F−e (θ) ≥ F+
e (θ)− F−e (θ) = F∆

e (θ) ≥ x.

2. Case: x < Qe(θ): Since the queue operates at capacity, Proposition 3.19b) implies that ∂Qe is
lower bound by −νe which gives us

Qe(ϑ) ≥ Qe(θ)− νe(ϑ− θ) > Qe(θ)− x > 0

for all ϑ ∈ [θ, θ + x
νe

). This implies f−e (ϑ+ τe) = νe for almost all such ϑ and, thus,

F−e (θ + x
νe

+ τe) = F−e (θ + τe) +

∫ θ+ x
νe

θ

f−e (ζ + τe)dζ = F−e (θ + τe) +
x

νe
· νe.
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From this, using the monotonicity of F−e , we immediately get

F−e (θ + x
νe

+ τe)− F−e (θ) ≥ F−e (θ + τe) +
x

νe
· νe − F−e (θ) ≥ x.

Note, that we will not show any continuity property of edge flows here since the proof would just be
exactly the same as the one for showing continuity in the multi-commodity setting (see Corollaries 3.45
and 3.46).

3.1.2. Multi-Commodity Edge Flows

We now introduce an edge flow wherein not all particles are interchangeable with each other. Instead
we are given a finite set of commodities I and every particle belongs to exactly one of these commodities.
Particles of the same commodity are still indistinguishable from each other but particles from different
commodities can be distinguished. Formally, such a multi-commodity edge flow is then given by one
edge inflow rate and one edge outflow rate for each commodity:

Definition 3.25. Let I be a finite set of commodities and e an edge with associated travel time
τe ≥ 0 and capacity νe > 0. Then a (multi-commodity) edge flow on this edge consists of

• a vector (f+
e,i)i∈I ∈ L1

loc(R≥0,R≥0)I where f+
e,i(θ) is the (edge) inflow rate of commodity i ∈ I

into edge e at time θ and

• a vector (f−e,i)i∈I ∈ L1
loc(R≥0,R≥0)I where f−e,i(θ) is the (edge) outflow rate of commodity

i ∈ I into edge e at time θ.

In the same way as for anonymous flows we can again define cumulative versions of those flow rates
by setting

F+
e,i(θ) :=

∫ θ

0

f+
e,i(ζ)dζ and F−e,i(θ) :=

∫ θ

0

f−e,i(ζ)dζ

for all i ∈ I and θ ∈ R≥0. Additionally, we also define the commodity specific edge load by
F∆
e,i(θ) := F+

e,i(θ)− F
−
e,i(θ).

Proposition 3.26. The commodity-specific cumulative in- and outflow functions are non-decreasing,
absolutely continuous and satisfy

∂F+
e,i(θ) = f+

e,i(θ) and ∂F−e,i(θ) = f−e,i(θ)

for almost all θ ∈ R≥0.

Proof. As in the case of anonymous edge flows, this follows directly from Proposition 2.49.

Also note that any multi-commodity flow has an associated anonymous flow obtained by summing
the in- and outflow rates for all commodities.

Definition 3.27. For any multi-commodity edge flow (f+
e,i, f

+
e,i) we define its associated anonymous

edge flow (f+
e , f

−
e ) by setting

f+
e :=

∑
i∈I

f+
e,i and f

−
e :=

∑
i∈I

f−e,i.

Observation 3.28. For the corresponding cumulative versions of both multi-commodity and anonymous
edge flow we clearly have the same relation, i.e.

F+
e =

∑
i∈I

F+
e,i, F−e =

∑
i∈I

F−e,i and F∆
e =

∑
i∈I

F∆
e,i.
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This way we can transfer all definitions for anonymous edge flows (i.e. objects like queue length or
exit time but also properties like working at capacity or weak flow conservation) to multi-commodity
edge flows. Hence, whenever we refer to the queue length of a multi-commodity edge flow, what we
mean is the queue length of its associated anonymous edge flow.
From now on we will use the short form “edge flow” to refer to a multi-commodity edge flow.

Whenever the set of commodities is a singleton (i.e. I = { ∗ }) we will call such an edge-flow a
single-commodity edge flow (and will then not distinguish between (f+

e,∗, f
−
e,∗) and (f+

e , f
−
e )).

We can now define flow conservation as well as expected travel time for multi-commodity flows in
essentially the same way as for anonymous flows.

Definition 3.29. We say that an edge flow satisfies weak flow conservation for commodity i
until ξ ∈ R̃≥0 if

F−e,i(θ + τe) ≤ F+
e,i(θ) for all θ < ξ. (14)

and strong flow conservation until ξ if

F−e,i(θ + τe) = F+
e,i(θ) for all θ < ξ.

Observation 3.30. If an edge flow satisfies weak/strong flow conservation for every commodity i ∈ I
until ξ then its associated anonymous edge flow satisfies weak/strong flow conservation until ξ as well.
The other direction clearly does not hold, i.e. if we only require weak/strong flow conservation for the
associated anonymous edge flow, this still allows particles to switch their commodity while travelling
along an edge.

Definition 3.31. We say that flow of commodity i enters edge e at time θ if F+
e,i is strictly

increasing at θ, i.e. if for all θ′ < θ we have F+
e,i(θ

′) < F+
e,i(θ).

Definition 3.32. For any edge flow (f+
e,�, f

−
e,�) we define the commodity specific experienced

current travel time of commodity i on this edge for all times θ at which flow of commodity i enters
edge e by

Ĉe,i(θ) := inf { ζ ≥ −θ | F−e,i(θ + ζ) ≥ F+
e,i(θ) } .

Observation 3.33. Whenever flow of some commodity i ∈ I enters edge e at time θ then flow enters
edge e at time θ (i.e. in the sense of the definition for anonymous edge flows). Conversely, whenever
flow enters edge e then there must be some commodity such that flow of this commodity enters at
that time.

A new aspect of multi-commodity flows is that particles of different commodities could experience
congestion differently. For example it could be that in case of congestion particles of a specific
commodity get priority over particles of other commodities. In particular, for a multi-commodity
edge flow operating at capacity its (commodity-specific) outflow rates are not necessarily uniquely
determined by its inflow rates (in contrast to the anonymous outflow rate which is uniquely determined
according to Corollary 3.21). This is true, even if we additionally require weak flow conservation for
every commodity (i.e. prevent particles from switching their commodity while on an edge):

Example 3.34. Consider an edge with capacity and free flow travel time 1. Then inflow rates
of f+

e,1 = f+
e,2 = 1[0,1] and outflow rates of f−e,1 = 1[1,2] and f+

e,2 = 1[2,3] (cf. Figure 6) define a
2-commodity edge flow (f+

e,�, f
−
e,�) wherein the particles of commodity 1 overtake those of commodity 2

while waiting in the queue, while still satisfying weak flow conservation for each of the two commodities
and its queue operating at capacity.

Defining outflow rates of g−e,1 = g−e,2 = 1
2 · 1[1,3] gives us an alternative edge flow (f+

e,�, g
−
e,�) without

such overtaking but also satisfying weak flow conservation and with its queue operating at capacity.

Therefore, we will impose a stronger condition on the queues, namely that they operate fairly. That
is, whenever particles enter an edge in a certain proportion between different commodities, they will
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Figure 6: A 2-commodity flow with overtaking (top) and without overtaking (bottom).

also leave the queue (or equivalently the edge) in this same proportion. Intuitively, we would then like
to write this fairness condition as

f−e,i(θ) =
f+
e,i(ϑ)

f+
e (ϑ)

· f−e (θ),

where ϑ is “the” time where flow entered edge e in order to leave at time θ. This definition, however,
has two problems: First, even for edge flows with queue operating at capacity, there might be multiple
times leading to the same exit time (e.g. Example 3.17) and, second, the above constraint is only well
defined if f+

e (ϑ) 6= 0 holds. The former problem can be solved by choosing a more specific entrance
time ϑ, e.g. the earliest or latest time with exit-time θ. A priori, these choices seem to lead to different
fairness definitions: However, as noted by Markl in [Mar21, Remark 3.3], for flows respecting capacity
these definitions do turn out to be equivalent for almost all θ ∈ R≥0.

Proposition 3.35. If an edge flow respects the capacity and satisfies weak flow conservation until ξ,
then for almost all θ ∈ [τe, ξ + τe) we have

min {ϑ | Te(ϑ) = θ } = min {ϑ | Te(ϑ) ≥ θ } = max {ϑ ≤ ξ | Te(ϑ) ≤ θ } = max {ϑ ≤ ξ | Te(ϑ) = θ } .

In particular, for almost all θ ∈ [τe, ξ + τe) there exists a unique time ϑ < ξ with Te(ϑ) = θ.

Proof. Weak flow conservation gives us Te(0) = τe and Te(ξ) ≥ ξ + τe. Since Te is continuous, this
implies [τe, ξ + τe) ⊆ Te([0, ξ)). Thus, every time θ ∈ [τe, ξ + τe) has at least one preimage in [0, ξ)
and all maxima and minima in the above statement are attained.
Furthermore, Te is non-decreasing on [0, ξ) by Proposition 3.16a) (as it respects capacity until ξ).

Thus, Proposition 2.10b) implies that almost all θ ∈ [τe, ξ + τe) have a unique preimage in [0, ξ).

For our second problem, it turns out that, if the queue operates at capacity, then for almost all
times θ with f+

e (ϑ) = 0 we already have f−e (θ) = 0 as well. Thus, we may just set f−e,i(θ) = 0 for all
these times and still have

∑
i∈I f

−
e,i(θ) = f−e (θ) for almost all θ.

Proposition 3.36. Let fe be an edge flow with queue operating at capacity until some time ξ ∈ R̃≥0.
Then for almost all θ ∈ [τe, ξ + τe) the edge flow satisfies

(∃ϑ : Te(ϑ) = θ ∧ f+
e (ϑ) = 0) =⇒ f−e (θ) = 0.

Proof. Define by

N := {ϑ ∈ [0, ξ) | Te(ϑ) < ξ + τe, f
+
e (ϑ) = 0 6= f−e (Te(ϑ)) }
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the set of all preimages of points where the statement of the proposition does not hold. Since Te is
non-decreasing on [0, ξ) (by Proposition 3.16a)) and F−e is absolutely continuous, we can apply the
chain rule (Proposition 2.51) to (11) to get

f−e (Te(ϑ)) · ∂Te(ϑ) = (∂F−e )(Te(ϑ)) · ∂Te(ϑ) = ∂(F−e ◦ Te)(ϑ) = ∂F+
e (ϑ) = f+

e (ϑ)

which implies that we have ∂Te(ϑ) = 0 for almost all ϑ ∈ N . Sard’s Theorem (Proposition 2.10a))
and the fact that Te maps null sets to null sets (cf. Proposition 2.47b)) then imply that the set

Te(N) = { θ ∈ [τe, ξ + τe) | ∃ϑ ∈ [0, ξ) : Te(ϑ) = θ and f+
e (ϑ) = 0 6= f−e (θ) }

is a null set. Together with the fact that almost all times θ have a unique preimage under Te
(Proposition 3.35) this shows the proposition.

We can now define our fairness condition for multi-commodity edge flows as follows:

Definition 3.37. Let (f+
e,i, f

−
e,i)i∈I be an edge flow such that its associated anonymous edge flow

respects the capacity and satisfies weak flow conservation until ξ ∈ R̃≥0. We then say that the queue
on edge e operates fair until ξ if for all commodities i ∈ I we have

f−e,i(θ + τe) =

f−e (θ + τe) ·
f+
e,i(ϑ)

f+
e (ϑ)

, if f+
e (ϑ) > 0,

0, else
for almost all θ < ξ, (15)

where ϑ is chosen such that Te(ϑ) = θ + τe.

Note, that this constraint is really well defined: Proposition 3.35 ensures that it does not depend on
the choice of ϑ while the fact that Te is an absolutely continuous function and, therefore, maps null
sets to null sets (cf. Proposition 2.47b)), implies that it is unaffected by any change of (f+

e,i, f
−
e,i)i∈I on

some set of measure zero.

Definition 3.38. An edge flow (f+
e,i, f

−
e,i)i∈I is a Vickrey edge flow until ξ ∈ R̃≥0 if its queue

operates at capacity and fair until ξ.

Observation 3.39. Proposition 3.36 implies that the queue of a single-commodity edge flow automatically
operates fairly if it operates at capacity.
We provide two alternative characterisations for when a queue operates at capacity and fair.

Proposition 3.40. For any edge flow (f+
e,i, f

−
e,i)i∈I and time ξ ∈ R̃≥0 the following properties are

equivalent:

a) (f+
e,i, f

−
e,i)i∈I is a Vickrey edge flow until ξ.

b) The associated anonymous flow respects the capacity and satisfies weak flow conservation until ξ
and we have

F−e,i(Te(θ)) = F+
e,i(θ) for all θ < ξ with Te(θ) < ξ + τe and all i ∈ I. (16)

c) The associated anonymous flow respects the capacity and satisfies weak flow conservation until ξ
and for every θ < ξ with Te(θ) < ξ + τe where Ĉe,i(θ) is defined we have Ĉe,i(θ) = Ce(θ).

Proof. a) =⇒ b): Since the queue operates at capacity until ξ, Proposition 3.19 already shows that
the associated anonymous flow respects capacity and satisfies weak flow conservation until ξ.
As Te is continuous and non-decreasing on [0, ξ] by Proposition 3.16a) and satisfies both
Te(0) = τe and Te(ξ) ≥ ξ + τe (since the flow satisfies weak flow conservation), there exists some
ξ̄ := min { θ ≤ ξ | Te(θ) = ξ + τe }. We now have to show (16) for all θ < ξ̄. For that, we fix
some representative of fe and define new outflow functions g−e,i by setting

g−e,i(Te(ϑ)) :=

f−e (Te(ϑ)) · f
+
e,i(ϑ)

f+
e (ϑ)

, if f+
e (ϑ) > 0 and

∣∣T−1
e (Te(ϑ))

∣∣ = 1

0, else
(17)

for ϑ < ξ̄ and g−e,i(θ) := 0 for all other times.
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Claim 3. This functions satisfies g−i,e(θ) = f−e,i(θ) for almost all θ ∈ [0, ξ̄ + τe) and all i ∈ I.

Proof. As the queue starts empty and Te is non-decreasing on [0, ξ), we have Te(ϑ) ≥ τe for all
ϑ < ξ and, therefore, g−e,i(θ) = 0 for all θ < τe. At the same time the queue starting empty also
implies f−i,e(θ) = 0 for almost all θ < τe.

For the interval [τe, ξ̄ + τe) Proposition 3.35 implies that it suffices to only consider those times
θ ∈ [τe, ξ̄ + τe) with a unique time ϑ̄ < ξ satisfying Te(ϑ) = θ. For almost all those θ we indeed
have

f−e,i(θ)
(15)
=

f−e (θ) · f
+
e,i(ϑ)

f+
e (ϑ)

= f−e (Te(ϑ)) · f
+
e,i(ϑ)

f+
e (ϑ)

, if f+
e (ϑ) > 0

0, if f+
e (ϑ) = 0

 (17)
= g−e,i(Te(ϑ)) = g−e,i(θ)

since the queue operates fair until ξ. �

With this claim we now get

F−e,i(Te(θ)) =

∫ Te(θ)

0

f−e,i(ζ)dζ
Cl. 3
=

∫ Te(θ)

0

g−e,i(ζ)dζ =

∫ Te(θ)

τe

g−e,i(ζ)dζ

(∗)
=

∫ θ

0

g−e,i(Te(ζ)) · ∂Te(ζ)dζ
(#)
=

∫ θ

0

f+
e,i(ζ)dζ = F+

e,i(θ)

for all θ < ξ̄. At (∗) we used the change of variable formula (Proposition 2.53) while for (#) it
remains to show that

g−e,i(Te(ζ)) · ∂Te(ζ) = f+
e,i(ζ) (18)

holds for almost all ζ ∈ [0, θ]. To do that we partition the interval [0, θ] into the following four
sets:

• N := { ζ ∈ [0, θ] | F+
e or Te is not differentiable at ζ or ∂F+

e (ζ) 6= f+
e (ζ) },

• M1 := { ζ ∈ [0, θ] \N | |T−1
e (Te(ζ))| > 1 },

• M2 := { ζ ∈ [0, θ] \N | T−1
e (Te(ζ)) = { ζ } and ∂F+

e (ζ) = f+
e (ζ) > 0 } and

• M2 := { ζ ∈ [0, θ] \N | T−1
e (Te(ζ)) = { ζ } and ∂F+

e (ζ) = f+
e (ζ) = 0 }.

Since F+
e and Te and absolutely continuous, the set N has measure zero. Thus, it suffices to

show (18) for almost all ζ ∈M1 ∪M2 ∪M3.

1. Case: ζ ∈M1: For those times ζ we must have ∂Te(ζ) = 0 (since Te is non-decreasing).
According to Proposition 3.16b) this then implies f+

e (ζ) = 0 (almost always) and, thus,
we have

g−e,i(Te(ζ)) · ∂Te(ζ) = g−e,i(Te(ζ)) · 0 = 0 = f+
e,i(ζ).

2. Case: ζ ∈M2: For (almost all) such times we have

g−e,i(Te(ζ)) · ∂Te(ζ)
(17)
= f−e (Te(ζ)) ·

f+
e,i(ζ)

f+
e (ζ)

· ∂Te(ζ)
(4)
= f+

e (ζ) ·
f+
e,i(ζ)

f+
e (ζ)

= f+
e,i(ζ)

where (4) holds since differentiating (11) together with the chain rule gives us f−e (Te(ζ)) ·
∂Te(ζ) = f+

e (ζ).

3. Case: ζ ∈M3: For (almost) all such times we have

g−e,i(Te(ζ)) · ∂Te(ζ)
(17)
= 0 = f+

e (ζ) ≥ f+
e,i(ζ) ≥ 0

and, therefore g−e,i(Te(ζ)) · ∂Te(ζ) = 0 = f+
e,i(ζ).
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b) =⇒ a): We first observe that (16) implies (11) for the associated anonymous flow and, thus,
the queue operates at capacity until ξ by Proposition 3.19. Moreover, Proposition 3.36 then
implies that for almost all θ ∈ [0, ξ) and all ϑ with Te(ϑ) = θ + τe and f+

e (ϑ) = 0 we have
f−e,i(θ + τe) ≤ f−e (θ + τe) = 0. In particular, (15) holds for almost all such θ.

Thus, it suffices to consider only those θ with a corresponding ϑ such that f+
e (ϑ) > 0 (and

Te(ϑ) = θ + τe).

We define the set

N :=
{
ϑ < ξ

∣∣ Te is not differentiable at ϑ or ∃i ∈ I : ∂F+
e,i(ϑ) 6= f+

e,i(ϑ)
}

which has measure zero. Since Te is absolutely continuous, the set Te(N) also has measure zero.
The same is then true for the set

N ′ := Te(N) ∪
{
θ
∣∣ ∃i ∈ I : ∂F−e,i(θ + τe) 6= f−e,i(θ + τe)

}
Thus, it suffices to only consider θ which additionally are not in N ′. For such θ we can
differentiate (11) to obtain

f−e (Te(ϑ)) · ∂Te(ϑ) = f+
e (ϑ).

Since the right hand side is strictly positive, all terms are non-zero and we can rearrange this to
get

∂Te(ϑ) =
f+
e (ϑ)

f−e (Te(ϑ))
. (19)

Similarly, differentiating (16) gives

f−e,i(Te(ϑ)) · ∂Te(ϑ) = f+
e,i(ϑ)

which, together with (19), implies

f−e,i(Te(ϑ)) · f+
e (ϑ)

f−e (Te(ϑ))
= f+

e,i(ϑ).

Using f+
e (ϑ) > 0 we can rearrange this one last time to obtain

f−e,i(θ + τe) = f−e,i(Te(ϑ)) = f+
e,i(ϑ) · f

−
e (Te(ϑ))

f+
e (ϑ)

= f−e (θ + τe)) ·
f+
e,i(ϑ)

f+
e (ϑ)

which is exactly what we had to show.

b) =⇒ c): We can show this in exactly the same way as Proposition 3.19e) =⇒ f): Take any time
0 < θ < ξ with Te(θ) < ξ + τe such that flow of commodity i enters at time θ (i.e. F+

e,i is
strictly increasing at θ). Then, (16) directly implies Ĉe,i(θ) ≤ Ce(θ). Now, we assume for
contradiction, that we have Ĉe,i(θ) < Ce(θ). Since Ce is continuous there exists some θ′ < θ

with θ + Ĉe,i(θ) ≤ θ′ + Ce(θ
′). As F−e,i is non-decreasing this gives us

F+
e,i(θ

′)
(16)
= F−e,i(θ

′ + Ce(θ
′)) ≥ F−e,i(θ + Ĉe,i(θ)) ≥ F+

e,i(θ).

This now implies f+
e,i(ζ) = 0 for almost all ζ ∈ [θ′, θ] which, according to Proposition 2.54a), is a

contradiction to flow of commodity i entering at time θ.

c) =⇒ b): By way of contradiction we assume that (16) does not hold, i.e. there exists some commodity
i and some θ < ξ with Te(θ) < ξ+τe such that either F−e,i(Te(θ)) < F+

e,i(θ) or F
−
e,i(Te(θ)) > F+

e,i(θ).
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1. Case: F−e,i(Te(θ)) < F+
e,i(θ): Since both sides of the inequality are continuous in θ and

equality holds for θ = 0 due to weak flow conservation, there must be some proper
interval (a, b) ⊆ [0, ξ) such that F−e,i(Te(a)) = F+

e,i(a) and F−e,i(Te(θ)) < F+
e,i(θ) for all

θ ∈ (a, b). This implies that F+
e,i is constant on (a, b) as otherwise Proposition 2.54d)

would guarantee the existence of some θ ∈ (a, b) at which flow enters the edge and, thus
c) would imply

F−e,i(Te(θ)) = F−e,i(θ + Ce(θ)) = F−e,i(θ + Ĉe,i(θ)) ≥ F+
e,i(θ).

Thus, for any θ ∈ (a, b) we have

F−e,i(Te(θ)) < F+
e,i(θ) = F+

e,i(a) = F−e,i(Te(a)).

As F−e,i is non-decreasing, this implies

θ + Qe(θ)
νe

+ τe = Te(θ) < Te(a) = a+ Qe(a)
νe

+ τe (20)

and, thus, using the fact that F+
e is constant on (a, b) and the (aggregated) flow respects

the capacity we get

νe(θ − a)
(20)
< Qe(a)−Qe(θ) = F+

e (a)− F+
e (θ) + F−e (θ + τe)− F−e (a+ τe)

= 0 +

∫ θ

a

f−e (ζ + ζ)dζ ≤ νe(θ − a),

which is a contradiction.

2. Case: F−e,i(Te(θ)) > F+
e,i(θ): For the second case we can now assume that F−e,i(Te(θ)) ≥

F+
e,i(θ) holds for all commodities i and all times θ < ξ. If then, additionally, we have
F−e,i(Te(θ)) > F+

e,i(θ) for some i ∈ I and θ < ξ with Te(θ) < ξ + τe, we must also have
F−e (Te(θ)) > F+

e (θ). Since the flow satisfies weak flow conservation and respects the
capacity, this is a contradiction to Proposition 3.16c).

Remark 3.41. We note that the alternative outflow rates g−e,i constructed in the proof of Proposi-
tion 3.40a) =⇒ b) satisfy the following ‘stronger’ version of our fairness condition (15):

f−e,i(Te(θ)) =

f−e (Te(θ)) ·
f+
e,i(θ)

f+
e (θ)

, if f+
e (θ) > 0

0, else
for almost all θ. (21)

In [HFY13, (4.19)] this equation is used as the defining constraint for queues operating fairly. Note,
however, that, in contrast to constraint (15), constraint (21) is not indifferent to changes on a set
of measure zero. Namely, if there is a proper interval [a, b] such that Te is constant on [a, b] then
changing only the single value of f−e,i(Te(a)) leads to a violation of constraint (21).

Nevertheless, we observe the following connection between the two constraints (15) and (21): Given
functions (not equivalence classes!) f+

e,i and f
−
e,i. If they satisfy constraint (21) then they also satisfy

constraint (15). If they satisfy constraint (15), then there exist alternative representatives g−e,i of f
−
e,i

(i.e. functions which are equal almost everywhere) that satisfy constraint (21) together with f+
e,i.

We now use Propositions 3.19 and 3.40 to deduce several useful properties of Vickrey edge flows.
We start by observing that every Vickrey edge flow automatically satisfies weak flow conservation for
every commodity:

Corollary 3.42. Let (f+
e,�, f

−
e,�) be a Vickrey edge flow until ξ. Then (f+

e,�, f
−
e,�) satisfies weak flow

conservation for every commodity until ξ.
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Proof. Take any commodity i ∈ I and time θ < ξ. Since the associated anonymous flow satisfies weak
flow conservation, there exists some ϑ ≤ θ with Te(ϑ) = θ + τe < ξ + τe. Proposition 3.40b) then
implies

F−e,i(θ + τe) = F−e,i(Te(ϑ))
(16)
= F+

e,i(ϑ) ≤ F+
e,i(θ).

Next, we show that – as in the case of anonymous edge flows – the commodity-specific inflow
rates completely determine the commodity-specific outflow rates. This is formalised in the following
corollary which is the multi-commodity analogue to Corollary 3.21:

Corollary 3.43. For any tuple of locally integrable functions (g+
e,i : R≥0 → R≥0)i∈I there exists a

tuple of locally integrable functions (g−e,i : R≥0 → R≥0)i∈I such that (g+
e,i, g

−
e,i) is a Vickrey edge flow.

Furthermore, if (f+
e,i, f

−
e,i) and (g+

e,i, g
−
e,i) are two Vickrey edge flows until ξ ∈ R̃≥0 and ξ′ ≤ ξ some

time with T fe (ξ′) ≥ ξ + τe then(
∀i ∈ I : f+

e,i

∣∣
[0,ξ′)

=a.e. g
+
e,i

∣∣
[0,ξ′)

)
=⇒

(
∀i ∈ I : f−e,i

∣∣
[0,ξ+τe)

=a.e. g
−
e,i

∣∣
[0,ξ+τe)

)
.

Proof. Since g+
e :=

∑
i∈I g

+
e,i is also locally integrable, Corollary 3.21 already implies that there exists a

(locally integrable) function g−e : R≥0 → R≥0 such that (g+
e , g

−
e ) is an anonymous edge flow operating

at capacity. Then, Proposition 3.35 implies that for the corresponding exit time function Te and
almost all times θ ∈ [τe,∞) there is a unique time ϑ ∈ R≥0 with Te(ϑ) = θ. Thus, we can define g−e,i
using (15) (and setting g−e,i(θ) = 0 for all θ < τe) to obtain a Vickrey edge flow (g+

e,i, g
−
e,i).

For uniqueness we already have f−e |[0,ξ+τe) =a.e. g
−
e |[0,ξ+τe) from Corollary 3.21. This, in particular,

implies T fe (ϑ) = T ge (ϑ) for all ϑ < ξ′ with T fe (ϑ) < ξ + τe. Now, for almost every θ ∈ [τe, ξ + τe)
Proposition 3.35 implies that there exists a unique ϑ ∈ [0, ξ) with θ = T fe (ϑ). Since T fe (ξ′) ≥ ξ + τe >
θ = T fe (ϑ) and T fe is non-decreasing on [0, ξ) by Proposition 3.16a), we have ϑ < ξ′ and, therefore,
T ge (ϑ) = T fe (ϑ). Thus, Proposition 3.40b) gives us

F−e,i(θ) = F−e,i(T
f
e (ϑ)) = F+

e,i(ϑ) = G+
e,i(ϑ) = G−e,i(T

g
e (ϑ)) = G−e,i(θ)

for all such θ ∈ [τe, ξ + τe). Since both F−e,i and G
−
e,i are continuous, this already implies that they

are equal on [τe, ξ + τe). Equality on [0, τe) follows directly from the definition of cumulative outflow
functions.

For the case of right-constant inflow rates we can, again, describe the corresponding outflow rates
of a Vickrey edge flow more explicitly:

Corollary 3.44. Let (f+
e,i, f

−
e,i) be a Vickrey edge flow until ξ and 0 ≤ a < b ≤ ξ times with

Te(b) ≤ ξ + τe. If all f+
e,i are constant on [a, b) then all f−e,i are right-constant on [Te(a), Te(b)) with at

most one (common) jump. More precisely,

• If Qe(a) = 0 or f+
e (a) ≥ νe then

f−e,i(θ) =
f+
e,i(a)νe

max { f+
e (a), νe }

for all θ ∈ [Te(a), Te(b)).

• If Qe(a) > 0 and f+
e (a) < νe then

f−e (θ) =


0, for all θ ∈ [Te(a), Te(b)) if f+

e (a) = 0
f+
e,i(a)νe

f+
e (a)

for all θ ∈ [Te(a), Te(c)) if f+
e (a) > 0

f+
e,i(a) for all θ ∈ [Te(c), Te(b)) if f+

e (a) > 0

where c := min { a+ Qe(a)

νe−f+
e (a)

, b }.

Proof. First, note that for any time θ ∈ [Te(a), Te(b)) there exists some time ϑ ∈ [a, b) with Te(ϑ) = θ.
We now continue with a case distinction:
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1. Case: f+
e (a) = 0: Here, (15) already ensures that f−e,i(θ) = 0 for almost all θ ∈ [Te(a), Te(b)).

Since we also have f+
e,i(a) ≤ f+

e (a) = 0 for all i ∈ I, this shows that the outflow has the form
stated in the corollary.

2. Case: Qe(a) > 0 and 0 < f+
e (a) < νe: Using Proposition 3.22 and (15) we get

f−e,i(θ)
(15)
= f−e (θ) ·

f+
e,i(ϑ)

f+
e (ϑ)

Prop. 3.22
= νe ·

f+
e,i(a)

f+
e (a)

for almost all θ ∈ [Te(a), Te(c)) and

f−e,i(θ)
(15)
= f−e (θ) ·

f+
e,i(ϑ)

f+
e (ϑ)

Prop. 3.22
= f+

e (a) ·
f+
e,i(a)

f+
e (a)

= f+
e,i(a)

for almost all θ ∈ [Te(c), Te(b)).

3. Case: f+
e (a) > 0 and Qe(a) = 0 or f+

e (a) ≥ νe: Again, using Proposition 3.22 and (15)
gives us

f−e,i(θ)
(15)
= f−e (θ) ·

f+
e,i(ϑ)

f+
e (ϑ)

Prop. 3.22
= min { f+

e (a), νe } ·
f+
e,i(a)

f+
e (a)

= min

{
f+
e,i(a),

f+
e,i(a)νe

f+
e (a)

}

= min

{
f+
e,i(a)νe

νe
,
f+
e,i(a)νe

f+
e (a)

}
=

f+
e,i(a)νe

max { νe, f+
e (a) }

for almost all θ ∈ [Te(a), Te(b)).

Next, we show two continuity properties of Vickrey edge flows: Namely, that the mapping from
edge flow to current travel time is weak-strong continuous and the mapping from inflow to outflow
rates is weak-strong continuous, provided that the inflow rates are locally p-integrable (instead of just
locally integrable):

Corollary 3.45. For any p > 1 and any (finite!) ξ ∈ R≥0 the mapping

Lp([0, ξ],R≥0)I × Lp([0, ξ + τe],R≥0)I → C([0, ξ]), (f+
e,�, f

−
e,�) 7→ Cfe

is sequentially weak-strong continuous, i.e. it maps weakly convergent sequences to uniformly converging
sequences. Here, we use the natural extension of the definition of the current travel time function Cfe
to “flows” which are only defined up to time ξ.

Proof. Let (f
(n),+
e,� , f

(n),−
e,� )n∈N∗ be a weakly convergent sequence in Lp([0, ξ],R≥0)I × Lp([0, ξ +

τe],R≥0)I . According to Proposition 2.50 the sequence (F
(n),+
e,� , F

(n),−
e,� )n∈N∗ then converges uni-

formly. The corresponding sequence of current travel times (Cf
(n)

e )n∈N∗ then converges uniformly as
well as linear combination of uniformly convergent sequences.

Corollary 3.46. For any p > 1 and any ξ ∈ R≥0 the mapping

Φξe : Lp([0, ξ],R≥0)I → Lp([0, ξ + τe],R≥0)I ,
f+
e,� 7→ f−e,� s.th. (f+

e,�, f
−
e,�) extended by 0 is a Vickrey edge flow until ξ

is sequentially weak-weak continuous, i.e. it maps weakly convergent sequences to weakly convergent
sequences.

Proof. We first note, that this mapping is well-defined by Corollary 3.43, i.e. there exists a unique family
of outflow rates for any given family of inflow rates. Moreover, these outflow rates are p-integrable as
they are measurable and bounded (cf. Proposition 2.14).
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Now, in order to show that Φξe is sequentially weak-weak continuous, take any weakly convergent
sequence (f

(n),+
e,� )n∈N∗ ∈ (Lp([0, ξ],R≥0)I)N

∗
with limit point f+

e,� ∈ Lp([0, ξ],R≥0)I and let

f
(n),−
e,� := Φξe(f

(n),+
e,� ) ∈

{
f ′ ∈ Lp([0, ξ + τe],R≥0)I

∣∣∣∣∣ ∑
i∈I

f ′i ≤a.e. νe

}

be the corresponding sequence of outflow rates. We have to show that this sequence of outflow rates
then weakly converges to f−e,� := Φξ

e(f
+
e,�). Since the set on the right is clearly convex, bounded and

strongly closed, it is also sequentially weakly compact (by Propositions 2.35, 2.40 and 2.41). Thus,
we can apply Proposition 2.25, i.e. it suffices to show that any weakly convergent subsequence of the
given sequence of outflow rates converges to f−e,�.

So, let (f
(nk),−
e,� )nk∈N∗ be such a subsequence and f∗,−e,� its limit point. We then have(

f
(nk),+
e,� , (f

(nk),−
e,�

)
w−−−−→

k→∞

(
f+
e,�, f

∗,−
e,�

)
.

We will now show that
(
f+
e,�, f

∗,−
e,�

)
is a Vickrey flow until ξ which then implies f∗,−e,� = Φξe(f

+
e,�) = f−e,�.

We first note that Proposition 2.37 ensure that
(
f+
e,�, f

∗,−
e,�

)
respects the edge capacity until ξ since

all
(
f

(nk),+
e,� , (f

(nk),−
e,�

)
do so as well. By Proposition 2.50 the sequences F (nk),+

e,� and F (nk),−
e,� converge

uniformly to F+
e,� and F

∗,−
e,� on [0, ξ] and [0, ξ + τe], respectively. Hence, weak flow conservation until ξ

for the elements of the sequence implies weak flow conservation until ξ for the limit point.
Furthermore, the sequence T f

(nk)

e also converges uniformly to T f
∗

e on [0, ξ] by Corollary 3.45. This,
in turn, implies that F (nk),− ◦T f(nk)

e converges pointwise to F ∗,− ◦T f∗e by Proposition 2.38. Thus, the
fact that (16) holds for all elements of the sequence guarantees that it holds for the limit point as well.

All together, Proposition 3.40b) now implies that
(
f+
e,�, f

∗,−
e,�

)
is a Vickrey flow until ξ and, therefore,

f∗,−e,� =a.e. f
−
e,� by Corollary 3.43. Thus, we have

f
(n),−
e,�

w−→ f−e,�

which concludes the proof.

Finally, we note that while it is also possible to show multi-commodity versions of Corollaries 3.23
and 3.24 (i.e. monotonicity and no idling property), those will be much weaker statement than their
anonymous counter parts. The following example demonstrates why this is the case with regards to
monotonicity:

Example 3.47. Let e be an edge with free flow travel time 1 and capacity 2 and consider the
2-commodity Vickrey flows given by the following two sets of edge inflow rates:

• fe is given by f+
e,1 = f+

e,2 = 1[0,2]

• ge is given by g+
e,1 = 1[0,2] and g+

e,2 = 2 · 1[1,2].

The cumulative flows then clearly satisfy F+
e,1(θ) ≤ G+

e,1(θ) and F+
e,2(θ) ≤ G+

e,2(θ) for all θ ∈ R≥0.
Nevertheless, we also have F−e,1(3) = 2 > 1 + 2

3 = G−e,1(3) (cf. Figure 7).

3.1.3. Network Flows

We are now going to extend the concept of dynamic flows from individual edges to whole networks.

Definition 3.48. A network N = (G, (τe), (νe), I, (uv,i), (Ti)) consists of

• a directed graph G = (V,E),

• a non-negative free flow travel time τe ∈ R≥0 for every edge e ∈ E,
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Figure 7: A counter-example to a naive monotonicity property for multi-commodity flows. The blue
commodity has the same (cumulative) inflow both in fe and ge whereas the red commodity
has smaller cumulative inflow in ge compared to fe. Nevertheless, for certain times the
cumulative outflow for the blue commodity is strictly smaller in ge compared to fe.

• a positive capacity νe ∈ R>0 for every edge e ∈ E,

• a finite set of commodities I,

• a network inflow rate uv,i ∈ L1
loc(R≥0,R≥0) for every commodity i ∈ I and every node v ∈ V

and

• a non-empty set of sink nodes Ti ⊆ V for every commodity i ∈ I.

As for the flow rates we also define the cumulative network inflow by

Uv,i : R≥0 → R≥0, θ 7→
∫ θ

0

uv,i(ζ)dζ.

Furthermore, we denote by

θ̂i := sup { θ ∈ R≥0 | Uv,i is strictly increasing at θ for some v ∈ V }

the last time at which additional particles of commodity i enter the network and by θ̂ := max { θ̂i | i ∈ I }
the last time where any particles enter the network. We say that commodity i (the network) has
finitely lasting network inflow rates if θ̂i <∞ (if θ̂ <∞).
We call a node v ∈ V a dead-end node of commodity i if there exists no v, Ti-path and denote

by V †i ⊆ V the set of all dead-end nodes of commodity i. We call a node v ∈ V a source node for
commodity i ∈ I if uv,i 6=a.e. 0 and denote by Si ⊆ V the set of all source nodes of commodity i.

Finally, we say that N is feasible if for every commodity i ∈ I and every source node s ∈ Si there
exists some sink t ∈ Ti such that there is some s, t-path in G or, equivalently, if V †i ∩ Si = ∅ for all
i ∈ I.

Definition 3.49. A (dynamic) flow in a network N is a tuple f = (fe)e∈E ∈ L1
loc(R≥0,R≥0)E×I ×

L1
loc(R≥0,R≥0)E×I . We define F(N ) as the set of all dynamic flows in N .

In other words, a dynamic flow f in a network consists of an edge flow (f+
e,i, f

−
e,i)i∈I for every edge e

of that network. Thus, all the properties previously defined for edge flows can also be applied to
dynamic flows (both separately to individual edges of the network or to all edges at once). Additionally,
we can now also define flow conservation properties between the edge, i.e. at the nodes:

Definition 3.50. For any dynamic flow f we denote by

Bv,i(θ) := Uv,i(θ) +
∑

e∈δ−(v)

F−e,i(θ)−
∑

e∈δ+(v)

F+
e,i(θ)
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the flow balance of commodity i at node v at time θ and by

F∆
i (θ) :=

∑
e∈E

F∆
e,i(θ) +

∑
v∈V \Ti

Bv,i(θ)

the network load of commodity i at time θ. Finally, F∆(θ) :=
∑
i∈I F

∆
i (θ) denotes the network

load at time θ.

Definition 3.51. We say that a flow f satisfies weak flow conservation for commodity i ∈ I at
node v ∈ V until ξ ∈ R̃≥0 if

Bv,i(θ) ≥ 0 for all θ < ξ.

It satisfies strong flow conservation for commodity i ∈ I at a node v ∈ V \ Ti until ξ if

Bv,i(θ) = 0 for all θ < ξ

and at a sink node t ∈ Ti if Bv,i is non-decreasing on [0, ξ).
We say that a flow satisfies weak/strong flow conservation at all nodes until ξ if it satisfies

weak/strong flow conservation until ξ for all commodities at all nodes.

Intuitive explanation: Weak flow conservation allows for temporary storage of flow volume at
nodes whereas strong flow conservation requires all flow arriving a node to immediately enter
another edge leaving that node (or leave the network entirely if it is a sink node). Thus, weak
flow conservation (at nodes) is used in dynamic flows whenever one wants to model congestion
on nodes (like for example in [FF58] or [Sku09]) whereas strong flow conservation at nodes is
used when congestion is entirely modelled on edges (like in this thesis).

Under strong flow conservation Bt,i(θ) denotes the amount of flow of commodity i which has
already arrived at some sink t ∈ Ti by time θ.

Proposition 3.52. A flow f satisfies strong flow conservation for commodity i at node v until ξ if
and only if it satisfies

ui,v(θ) +
∑

e∈δ−(v)

f−e,i(θ)−
∑

e∈δ+(v)

f+
e,i(θ)

{
= 0, if v ∈ V \ Ti
≥ 0, if v ∈ Ti

for almost all θ < ξ. (22)

Proof. Define by
bv,i(θ) := ui,v(θ) +

∑
e∈δ−(v)

f−e,i(θ)−
∑

e∈δ+(v)

f+
e,i(θ)

the netto node-inflow rate. Then we get directly from the definition that bv,i =a.e. ∂Bv,i and
Bv,i =

∫
0
bv,i(ζ)dζ. The equivalence then follows immediately by using the connection between locally

integrable and absolutely continuous functions (Proposition 2.49).

Proposition 3.53. Let f be a dynamic flow. Then for any subset of nodes W ⊆ V and any time
θ ∈ R≥0 we have∑

e∈E[W ]

F∆
e,i(θ) =

∑
v∈W

Uv,i(θ) +
∑

e∈δ−(W )

F−e,i(θ)−
∑

e∈δ+(W )

F+
e,i(θ)−

∑
v∈W

Bv,i(θ).

In particular, if f satisfies strong flow conservation at all nodes until θ, then we have

F∆
i (θ) = Ui(θ)− Zi(θ),

where Ui(θ) :=
∑
v∈V Uv,i(θ) and Zi(θ) :=

∑
t∈Ti Bt,i(θ) denote commodity i’s total cumulative network

in- and outflow, respectively.
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Proof. We can show this via a direct computation:∑
e∈E[W ]

F∆
e,i(θ) =

∑
e∈E[W ]

(
F+
e,i(θ)− F

−
e,i(θ)

)
=
∑
v∈W

∑
e∈δ+(v)

F+
e,i(θ)−

∑
e∈δ+(W )

F+
e,i(θ)−

∑
v∈W

∑
e∈δ−(v)

F−e,i(θ) +
∑

e∈δ−(W )

F−e,i(θ)

=
∑
v∈W

( ∑
e∈δ+(v)

F+
e,i(θ)−

∑
e∈δ−(v)

F−e,i(θ)
)

+
∑

e∈δ−(W )

F−e,i(θ)−
∑

e∈δ+(W )

F+
e,i(θ)

=
∑
v∈W

(
Uv,i(θ)−Bv,i(θ)

)
+

∑
e∈δ−(W )

F−e,i(θ)−
∑

e∈δ+(W )

F+
e,i(θ).

The second part of the proposition now follows directly from the first by choosing W = V .

Corollary 3.54. Let f be a dynamic flow and i ∈ I some commodity such that f satisfies strong
flow conservation at all sink nodes of commodity i. Then, the network load of that commodity is
non-increasing after θ̂i, i.e.

F∆
i (a) ≥ F∆

i (b) for all θ̂i ≤ a ≤ b.

Proof. This follows directly from Proposition 3.53 since all Uv,i are constant after θ̂ while the functions
Bt,i are non-decreasing for t ∈ Ti.

Definition 3.55. We call a flow f a feasible flow until ξ ∈ R̃≥0 if it satisfies weak flow conservation
for all commodities at all nodes and edges and respects the capacities of all edges until ξ.

We call f a Vickrey flow until ξ ∈ R̃≥0 if it satisfies strong flow conservation at all nodes until ξ
and all queues operate at capacity and fair until ξ.

v w

Qe(θ)
νe

νe

τe

v w

Figure 8: A (constant) Vickrey flow on a single edge e.

A helpful property of Vickrey flows is that, as long as the network inflow rates are (essentially)
bounded, the cumulative in- and outflows as well as queue length and, most importantly, the current
travel times are not just absolutely continuous but even Lipschitz-continuous:

Proposition 3.56. Let f be a Vickrey flow until ξ ∈ R̃≥0 and 0 ≤ θ1 ≤ θ2 ≤ ξ any two times
such that

∑
i∈I uv,i is essentially bounded by some constant M during [θ1, θ2). Then for any edge

e = vw ∈ E we have

Ce(θ1)− (θ2 − θ1) ≤ Ce(θ2) ≤ Ce(θ1) + (θ2 − θ1) ·
(∑

e′∈δ−(v) νe′ +M
)

νe
.

Proof. We show the following analogous bound for the queue length function from which the proposition
then follows immediately:

Claim 4. We have Qe(θ1)− (θ2 − θ1)νe ≤ Qe(θ2) ≤ Qe(θ1) + (θ2 − θ1) ·
(∑

e′∈δ−(v) νe′ +M
)
.
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Proof. For the first inequality we only need the fact that f respects the capacity on edge e:

Qe(θ2) = Qe(θ1) +

∫ θ2

θ1

f+
e (ϑ)︸ ︷︷ ︸
≥0

dϑ−
∫ θ2

θ1

f−e (ϑ+ τe)︸ ︷︷ ︸
≤νe

dϑ ≥ Qe(θ1)− νe(θ2 − θ1).

For the second inequality we additionally use Proposition 3.52, i.e. strong flow conservation at node v
as well as the essential bound M on the network inflow rate at this node:

Qe(θ2) ≤ Qe(θ1) +

∫ θ2

θ1

f+
e (ϑ)dϑ

(22)
≤ Qe(θ1) +

∑
e′∈δ−(v)

∫ θ2

θ1

f−e′ (ϑ)︸ ︷︷ ︸
≤νe′

dϑ+

∫ θ2

θ1

∑
i∈I

uv,i(ϑ)︸ ︷︷ ︸
≤M

dϑ

≤ Qe(θ1) + (θ2 − θ1) ·
( ∑
e′∈δ−(v)

νe′ +M
)

�

Applying the definition Ce(θ) = Qe(θ)
νe

+ τe now directly yields the desired bounds.

We conclude our discussion of dynamic network flows by introducing one additional notion: That of
restricting a dynamic flow to a subnetwork.

Definition 3.57. Let N = (G, τ, ν, I, u, T ) and N ′ = (G′, τ ′, ν′, I ′, u′, T ′) be two networks. We call
N ′ a subnetwork of N if

• G′ is a subgraph of G, i.e. G′ ⊆ G,

• the free flow travel times and capacities coincide on the common edges, i.e. τ ′ = τ |E[G′] and
ν′ = ν|E[G′] and

• the two networks have the same set of commodities, i.e. I ′ = I.

Definition 3.58. Let N = (G, τ, ν, I, u, T ) be a network and N ′ = (G′, τ ′, ν′, I ′, u′, T ′) a subnetwork.
Then we define the restriction mapping∣∣

N ′ : F(N )→ F(N ′), f 7→ f
∣∣
{±}×E[G′]×I

which restricts any given flow in N to a flow in N ′.

A first simple application of this notion is the following proposition which essentially states that
when considering Vickrey flows we may assume without loss of generality that every commodity has
exactly one sink node:

Proposition 3.59. Let N be a network with Si ∩ Ti = ∅ for all commodities i ∈ I. Then there exists
a larger network Ñ such that

• N is a subnetwork of Ñ ,

• in Ñ every commodity has exactly one sink node and

• the restriction mapping |N is a one to one correspondence between Vickrey flows in Ñ and in
N .

Proof. We construct Ñ as follows: For every commodity i ∈ I we add one new node ti and edges
vti for every v ∈ Ti with free flow travel time 1 and capacity ν̃vti :=

∑
e∈δ−(v) νe. We then define

T̃i := { ti } and ũti,i′ := 0 for all i′ ∈ I while keeping the network inflow rates the same for all other
nodes.

It is now easy to see that |N maps Vickrey flows to Vickrey flows. Moreover, it is one-to-one since
every Vickrey flow in N can be uniquely extended to a Vickrey flow in Ñ by sending all excess flow at
nodes v ∈ Ti onto the direct edge vti.

58



3.2. Behavioural Model
In this section we introduce and discuss the behavioural aspects of our model. We start by defining
what dynamic flows we consider to be equilibrium flows in our current information setting using a
node label-based approach similar to the one used in [KS11; CCL15] for the full information setting.
We then define two quality measures that we will later use to judge the quality of equilibrium flows in
our model.

3.2.1. Instantaneous Dynamic Equilibria

As already discussed in the introduction (Chapter 1) we want to study a model wherein individual
agents/particles only have access to information on the current state of the network (as opposed to
the full trajectory of the future flow evolution like in the full information model considered e.g. in
[KS11; CCL15]). We then assume that at every time every agent chooses a route with (seemingly)
shortest travel time based on this current information. More precisely, we assume that whenever an
agent arrives at a node they get the expected current travel times of all edges, compute a shortest
path from their current location to one of their sink nodes (based on this information) and then enter
the first edge of such a path. A Vickrey flow wherein each particle only travels along such currently
shortest paths is then the exact equilibrium concept we will consider from here on out.
In order to formalise this equilibrium concept we will use time dependent node labels denoting

for every node, commodity and time the current shortest distance from this node to a sink of that
commodity at that time.

Definition 3.60. Given a dynamic flow f we define for any commodity i ∈ I time dependent node
labels denoting for any node v ∈ V the (expected) current distance to the closest sink, i.e.

Lv,i : R≥0 → R̃≥0, θ 7→ Lv,i(θ) := inf { Cp(θ) | p a v, t-path for some t ∈ Ti } , (23)

where Cp(θ) :=
∑
e∈p Ce(θ) denotes the current expected travel time along a path p.

We say that a v, Ti-path p is active for commodity i at time θ if Cp(θ) = Lv,i(θ) and denote the
set of all active v, Ti-path at time θ by Pv,i(θ) := { p a v, Ti-path | p active for i at θ }.

We say that an edge e = vw ∈ E is active for commodity i at time θ whenever

Lv,i(θ) ≥ Ce(θ) + Lw,i(θ)

and denote by Ei(θ) := { e ∈ E | e active for i at θ } the set of active edges of commodity i at time θ.
In single commodity networks we will drop all indices i.

Remark 3.61. For any fixed time θ and commodity i the vector (Lv,i(θ))v is a vector of distance labels
with respect to the edge costs (Ce(θ))e. Thus, these labels always satisfy properties a) to e) from
Proposition 2.67. If the flow satisfies weak flow conservation on all edges at time θ, then the node
labels at that time also satisfy f) to m).
If, additionally, every cycle has a strictly positive free flow time, then the node labels also satisfy

properties n) and o) from that proposition. In particular, for such flows Bellman’s equations (1) can
be used as an alternative (recursive) definition of the current distances (cf. e.g. [GHS20; GHKM23]):

Lv,i(θ) =

{
0, if v ∈ Ti
inf {Ce(θ) + Lw,i(θ) | e = vw ∈ δ+(v) } , else

for all v ∈ V, i ∈ I, θ ∈ R≥0. (24)

In addition to all these properties inherited from Proposition 2.67 we will also make use of two
continuity properties of the current distances: First, every such node label is continuous as a function
in time and, second, the mapping from current travel times to current distances is continuous as
mapping between two function spaces. Together with Corollaries 3.45 and 3.46 the latter then also
implies that for Vickrey flows the mapping from inflow rates to current distances is weak-strong
continuous which will be an important ingredient for our existence proof in Section 4.2.

Proposition 3.62. For every commodity i ∈ I and any node v ∈ V \ V †i the function Lv,i : R≥0 → R
is absolutely continuous.
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Proof. For a node v /∈ V †i the node label is always finite by Proposition 2.67a). The node label
functions are then absolutely continuous as pointwise minima over a finite set of sums of the absolutely
continuous functions Ce.

Proposition 3.63. For every commodity i ∈ I and node v ∈ V \ V †i the mapping

C(R≥0)E → C(R≥0), C� 7→ Lv,i

is sequentially (strong-strong) continuous, i.e. it maps uniformly convergent sequences to uniformly
convergent sequences.

Proof. Given a uniformly convergent sequence (C(n)
. )n the sequences (C

(n)
p )n converge uniformly

as well as linear combinations of uniformly convergent sequences. This then implies the uniform
convergence of the sequence (L

(n)
v,i )n as minimum of uniformly convergent sequences.

These node labels now allow us to formally define our main object of study for the rest of this thesis:
(Vickrey) flows in which particles always choose an optimal route according to the current travel times.
A flow in which (almost) all particles behave this way is then an equilibrium in our setting:

Definition 3.64. A Vickrey flow f until ξ is an instantaneous dynamic equilibrium (IDE)
until ξ if it satisfies

f+
e,i(θ) > 0 =⇒ e ∈ Ei(θ) for almost all θ < ξ (25)

and for all i ∈ I and e ∈ E.

With this definition we can now check that the flow seen in Example 1.1 in the introduction is in
fact an IDE (for suitably chosen network inflow rates and edge capacities):

Example 3.65. Consider the 2-commodity network depicted in the top left of Figure 9 with edge
labels denoting free flow travel time and capacity (in that order), a network inflow rate of 2 at node
s1 during [0, 1] for commodity 1 (blue) and a network inflow rate of 4 at node s2 during [1, 2] for
commodity 2 (red). The flows depicted in Figures 9 and 10 are then two possible IDE in this network.
The flow in Figure 10 is also a full information equilibrium flow (and, in fact, also a system optimum
flow with respect to both the quality measures we will define in Subsection 3.2.2). Note that the latter
two statements would still be true if we were to slightly increase the free flow travel time of the direct
edge s1t while the IDE depicted in Figure 10 would not be an IDE then anymore.

As we can already see in this example, IDE are, not very surprisingly, not necessarily optimal in
hindsight – neither from a system wide perspective nor from the point of view an individual particles
(as it would be the case in a full information equilibrium). We will see exactly how much worse an
IDE can be compared to an optimal flow in Section 6.3. In fact, it will turn out that it is possible in
certain cases for particles to never reach a sink and travel around in cycles forever (see Theorem 6.18).

Nevertheless, we would at least expect that in an IDE particles never get completely stuck, i.e. arrive
at some non-sink node from which there is no way left to go to. This is particularly important for
constructing IDE by repeatedly extending IDE up to certain point which we will do in the following
chapter. Ideally, we would like to say that in an IDE no particle ever arrives at a dead-end node.
This is, in fact true, for feasible networks with strictly positive free flow travel times. For networks
with cycles of free flow travel time zero, however, our model technically allows for “ghost particles”
to appear at some node in such a cycle, travel around that cycle and then disappear again at their
starting node (at the same time at which they appeared to ensure flow conservation at nodes!). This,
in particular, is even possible at dead-end nodes. Thus, we have to content ourselves with the following,
more technical version of our desired statement which will still be enough to ensure that we will never
have to deal with any “stuck” particles when constructing IDE.

Proposition 3.66. Let f be an IDE until ξ in a feasible network N and e = vw ∈ E an edge such
that (f+

e,�, f
−
e,�) is a Vickrey edge flow until ξ + Qe(ξ)

νe
.
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Figure 9: The 2-commodity network with a possible IDE already discussed in Example 1.1. In the
first image (top left) the edge labels denote the free flow travel time and the capacity of each
respective edge (in this order). Particles of the blue commodity enter the network at node
s1 and have node t as their destination. Particles of the red commodity enter the network
at node s2 and also have node t as their destination.
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Figure 10: An alternative IDE for the 2-commodity network discussed in Example 1.1.

If v /∈ V †i and w ∈ V †i then

f−e,i(θ) = 0 for almost all θ < Te(ξ). (26)

If v, w ∈ V †i then

Ce(θ) > 0 =⇒ f−e,i(θ) = 0 for almost all θ < Te(ξ). (27)

Proof. If v /∈ V †i and w ∈ V †i , then e = vw can never be active for commodity i as we always have
Lv,i(θ) <∞ and Lw,i(θ) =∞ by Proposition 2.67a). Thus, in an IDE until ξ no flow of commodity i
can enter edge e until that time which, in turn, implies

F−e,i(Te(ξ))
(16)
= F+

e,i(ξ)) = 0

and, hence, f−e,i(θ) = 0 for almost all θ < Te(ξ).
For edges between dead-end nodes we use Proposition 3.53 to show that for any θ < ξ we have

0 ≤
∑

e∈E[V †i ]

F∆
e,i(θ)

Prop. 3.53
=

∑
v∈V †i

Uv,i(θ) +
∑

e∈δ−(V †i )

F−e,i(θ)−
∑

e∈δ+(V †i )

F+
e,i(θ)−

∑
v∈V †i

Bv,i(θ)
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(∗)
≤
∑
v∈V †i

Uv,i(θ) +
∑

e∈δ−(V †i )

F−e,i(θ)− 0
(#)
= 0 +

∑
e∈δ−(V †i )

F−e,i(θ)
(26)
= 0,

where (∗) holds due to weak flow conservation on edges and nodes and (#) because in a feasible
network there can be no network inflow at dead-end nodes. Thus, for any edge e ∈ E[V †i ] such that
(f+
e,�, f

−
e,�) is a Vickrey edge flow until ξ + Qe(ξ)

νe
we have∫ Te(θ)

θ

f−e,i(ζ)dζ = F−e,i(Te(θ))− F
−
e,i(θ)

(16)
= F+

e,i(θ)− F
−
e,i(θ) = F∆

e,i(θ) = 0

for all times θ < ξ and, therefore, f−e,i(ζ) = 0 for almost all ζ ∈ [θ, Te(θ)) = [θ, θ + Ce(θ)). From this,
we can now deduce (27) by observing that

{ θ ∈ [0, Te(ξ)) | Ce(θ) > 0 } ⊆
⋃

θ∈[0,ξ)

[θ, Te(θ))

and applying Proposition 2.15.

3.2.2. Quality Measures for Dynamic Flows

In order to measure the quality of dynamic flows (and, in particular, the instantaneous dynamic
equilibria) we need to define some objective that the flow are supposed to achieve. In this thesis we
will consider two such quality measures: The arrival time of the last particle at its sink and the “sum”
of the travel times of all particles:

Definition 3.67. Let f be a dynamic flow and i ∈ I a commodity with finitely lasting network inflow
rates. We then define

• the makespan of i in f as

Ψi(f) := inf
{
θ ≥ θ̂i

∣∣∣ F∆
i (θ) = 0

}
.

• the total travel times of i in f is defined as

Ξi(f) :=
∑
e∈E

∫ ∞
0

Ce(ζ)f+
e,i(ζ)dζ.

If all commodities have finitely lasting network inflow rates, we additionally define by

Ψ(f) := max {Ψi(f) | i ∈ I } and Ξ(f) :=
∑
i∈I

Ξi(f)

the makespan of f and total travel time of f , respectively.

Definition 3.68. We call a terminating feasible flow f an optimal flow with respect to makespan/
total travel time if it minimizes makespan/total travel time among all feasible flows.

For the case of single-commodity networks it is known that there always exist so called earliest
arrival flows (which can even be computed efficiently – see [BS09]). These flows maximize the amount
of flow which has already reached a sink for all times simultaneously. They, therefore, also minimize
both makespan and total travel time.
Remark 3.69. For single-commodity networks restricting optimal flows to only Vickrey flows (instead
of any feasible flow) would not impact the achievable makespan/total travel time as the monotonicity
of the edge dynamics of Vickrey flows (see Corollary 3.23) guarantees that waiting at nodes (or even
on edges) is never beneficial. This is, however, not true any more for multi-commodity flows as can be
seen in the following example.
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Figure 11: A two-commodity network in which the optimal achievable makespan is different for Vickrey
flows and flows which are allowed to wait at nodes.

Example 3.70. To see why waiting can be beneficial in multi-commodity networks we consider
the two commodity network depicted in Figure 11. Since there is only one possible path for each
commodity, this instance has a unique Vickrey flow. In this flow the edge vw is first traversed by
all flow of the red commodity (travelling from s2 to t2 and then by the blue commodity (travelling
from s1 to t1). Thus, the flow particles of the blue commodity have to wait in a queue on edge vw for
one time unit. Hence, the makespan of this flow is 7 (the arrival time of the last particle of the blue
commodity at its sink t1).
On the other hand, in a flow with node storage, the flow of the blue commodity can overtake the

second half of the red commodity at node v and immediately enter the middle edge vw. Thus, such a
flow can achieve a makespan of 6 (the simultaneous arrival time of the last particle of the blue and
the red commodity at their respective sinks).

Definition 3.71. Let f be a flow satisfying weak flow conservation at all nodes and edges and strong
flow conservation at all sink nodes.
We then say that f terminates (by time Ψ(f)) if Ψ(f) <∞.

The following proposition justifies this definition of terminating flows:

Proposition 3.72. Let f be a dynamic flow and i ∈ I some commodity such that f satisfies weak
flow conservation for commodity i on all edges and nodes as well as strong flow conservation at all
sink nodes of commodity i. Then, after Ψi(f) there will never be any flow of commodity i in the
network, i.e.

F∆
e,i(θ) = 0 and Bv,i(θ) = 0 for all e ∈ E, v ∈ V \ Ti, θ ≥ Ψ(f).

Proof. We observe that weak flow conservation on edges implies that the edge load is non-negative as

0
(3)
≤ F+

e,i(θ)− F
−
e,i(θ + τe) ≤ F+

e,i(θ)− F
−
e,i(θ) = F∆

e,i(θ)

for all edges e ∈ E. Additionally, Corollary 3.54 implies∑
e∈E

F∆
e,i(θ) +

∑
v∈V \Ti

Bv,i(θ) = F∆
i (θ) ≤ F∆

i (Ψi(f)) = 0

for all times θ ≥ Ψ(f). As all summands are non-negative, this is only possible if they are all zero.

For edges with non-zero free flow travel time it is easy to see that the above proposition also implies
that the in- and outflow rate (of commodity i) into any such edge is also zero (almost always) after
Ψi(f). For edges with free flow travel time zero, however, there is again the complicating possibility
of “ghost particles” travelling around such cycles (as in the previous subsection in the context of
Proposition 3.66) without adding anything to the respective edge load (and, thus, to the network load)
of the respective commodity.

Importantly, though, in a Vickrey flow such “ghost particles” may only use edges with current travel
time zero and, in particular, cannot build up any queues or contribute to the total travel time of that
commodity.
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Proposition 3.73. Let f be a dynamic flow with queues operating fair and at capacity on all edges
and i ∈ I a commodity with finitely lasting inflow rates, strong flow conservation at all sink nodes and
weak flow conservation at all other nodes. Then for every time θ ≥ Ψi(f) we have

f+
e,i(ζ) = f−e,i(ζ) = 0 for almost all ζ ∈ [θ, Te(θ)].

In particular, we have f+
e,i(θ) = 0 for almost all θ ≥ Ψi(f) with Ce(θ) > 0.

Proof. Using Proposition 3.72 and Proposition 3.40b) we have

0 = F∆
e,i(θ) = F+

e,i(θ)− F
−
e,i(θ)

(16)
= F−e,i(Te(θ))− F

−
e,i(θ) =

∫ Te(θ)

θ

f−e,i(ζ)dζ

as well as

0 = F∆
e,i(Te(θ)) = F+

e,i(Te(θ))− F
−
e,i(Te(θ))

(16)
= F+

e,i(Te(θ))− F
+
e,i(θ) =

∫ Te(θ)

θ

f+
e,i(ζ)dζ

for all edges e ∈ E. Since both in- and outflow rate are non-negative, this implies the corollary.
From this we can now deduce the second part of the proposition in the same way as in the proof of

Proposition 3.66 by observing that

{ θ ≥ Ψi(f) | Ce(θ) > 0 } ⊆
⋃

θ≥Ψi(f)

[θ, Te(θ))

and applying Proposition 2.15.

With this proposition we can now show that for Vickrey flows our definition of total travel times
coincides with the one used in [GHKM23, Section 6.1]. We start by showing that for a single edge we
can compute the total travel time incurred on this edge by particles entering before some time θ in
two different ways: Either we “add” for every such particle the expected current travel time at the
time of entrance (left side) or we “add” for every particle the difference between its entrance and exit
time (right side). Intuitively, the fact that the queue operates fair and at capacity should guarantee
that these two measures are the same. The following lemma shows that this is indeed the case. Using
a telescope sum argument we will then be able to lift this equality to the whole network.

Lemma 3.74. Let (f+
e,i, f

−
e,i)i∈I be a Vickrey edge flow until ξ ∈ R̃≥0. Then for every time θ < ξ with

Te(θ) < ξ + τe and every commodity i ∈ I we have∫ θ

0

Ce(ζ)f+
e,i(ζ)dζ =

∫ Te(θ)

0

ζf−e,i(ζ)dζ −
∫ θ

0

ζf+
e,i(ζ)dζ.

Proof. This proof is essentially a straightforward computation:∫ Te(θ)

0

ζf−e,i(ζ)dζ −
∫ θ

0

ζf+
e,i(ζ)dζ

(∗)
=
[
ζF−e,i(ζ)

]Te(θ)
0

−
∫ Te(θ)

0

F−e,i(ζ)dζ −
[
ζF+

e,i(ζ)
]θ
0

+

∫ θ

0

F+
e,i(ζ)dζ

(4)
= Te(θ)F

−
e,i(Te(θ))−

∫ Te(θ)

τe

F−e,i(ζ)dζ − θF+
e,i(θ) +

∫ θ

0

F+
e,i(ζ)dζ

(#)
= Te(θ)F

−
e,i(Te(θ))−

∫ θ

0

F−e,i(Te(ζ))∂Te(ζ)dζ − θF+
e,i(θ) +

∫ θ

0

F+
e,i(ζ)dζ

(16)
= Te(θ)F

+
e,i(θ)−

∫ θ

0

F+
e,i(ζ)

(
1 +

∂Qe(ζ)

νe

)
dζ − θF+

e,i(θ) +

∫ θ

0

F+
e,i(ζ)dζ

= (Te(θ)− θ)F+
e,i(θ)−

∫ θ

0

F+
e,i(ζ)

∂Qe(ζ)

νe
dζ
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(∗)
= (Te(θ)− θ)F+

e,i(θ)−
[
F+
e,i(ζ)

Qe(ζ)

νe

]θ
0

+

∫ θ

0

f+
e,i(ζ)

Qe(ζ)

νe
dζ

=

(
Qe(θ)

νe
+ τe

)
F+
e,i(θ)− F

+
e,i(θ)

Qe(θ)

νe
+

∫ θ

0

f+
e,i(ζ)

Qe(ζ)

νe
dζ

=

∫ θ

0

τef
+
e,i(ζ)dζ +

∫ θ

0

f+
e,i(ζ)

Qe(ζ)

νe
dζ =

∫ θ

0

Ce(ζ)f+
e,i(ζ)dζ,

where we use integration by parts (Proposition 2.52) for every equality marked by (∗), the change of
variable formula (Proposition 2.53) at (#), weak flow conservation at (4) and the fact that the queue
operates fair and at capacity to be able to use (16) from Proposition 3.40b).

Proposition 3.75. Let f be a Vickrey flow and i ∈ I a commodity with finite makespan. Then the
following holds

Ξi(f) =

∫ Ψi(f)

0

ζ·∂Zi(ζ)dζ−
∑
v∈V

∫ θ̂i

0

ζ·uv,i(ζ)dζ =

∫ Ψi(f)

0

F∆
i (ζ)dζ =

∫ Ψi(f)

0

Ui(ζ)dζ−
∫ Ψi(f)

0

Zi(ζ)dζ.

Proof. The first equality follows from Lemma 3.74 using a telescope sum argument and strong flow
conservation at the nodes:

Ξi(f) =
∑
e∈E

∫ ∞
0

Ce(ζ)f+
e,i(ζ)dζ

Prop. 3.73
=

∑
e∈E

∫ Ψi(f)

0

Ce(ζ)f+
e,i(ζ)dζ

Lem. 3.74
=

∑
e∈E

∫ Te(Ψi(f))

0

ζf−e,i(ζ)dζ −
∑
e∈E

∫ Ψi(f)

0

ζf+
e,i(ζ)dζ

Prop. 3.73
=

∑
e∈E

∫ Ψi(f)

0

ζf−e,i(ζ)dζ −
∑
e∈E

∫ Ψi(f)

0

ζf+
e,i(ζ)dζ

=
∑
v∈V

∑
e∈δ−(v)

∫ Ψi(f)

0

ζf−e,i(ζ)dζ −
∑
v∈V

∑
e∈δ+(v)

∫ Ψi(f)

0

ζf+
e,i(ζ)dζ

=
∑
v∈V

∫ Ψi(f)

0

ζ
( ∑
e∈δ−(v)

f−e,i(ζ)−
∑

e∈δ+(v)

f+
e,i(ζ)

)
dζ

=
∑
v∈V

∫ Ψi(f)

0

ζ
(
∂Bv,i(ζ)− uv,i(ζ)

)
dζ

(4)
=
∑
v∈Ti

∫ Ψi(f)

0

ζ∂Bv,i(ζ)dζ −
∑
v∈V

∫ Ψi(f)

0

ζuv,i(ζ)dζ

=

∫ Ψi(f)

0

ζ∂Zi(ζ)dζ −
∑
v∈V

∫ θ̂

0

ζuv,i(ζ)dζ,

where we use strong flow conservation at the nodes at (4).
The second equality from the proposition’s statement can be shown using integration by parts:∫ Ψi(f)

0

ζ∂Zi(ζ)dζ −
∑
v∈V

∫ θ̂

0

ζuv,i(ζ)dζ =

∫ Ψi(f)

0

ζ∂Zi(ζ)dζ −
∫ Ψi(f)

0

ζ∂Ui(ζ)dζ

=

∫ Ψi(f)

0

ζ · ∂(Zi − Ui)(ζ)dζ
Prop. 3.53

= −
∫ Ψi(f)

0

ζ∂F∆
i (ζ)dζ

(∗)
= −

[
ζF∆

i (ζ)
]Ψi(f)

0
+

∫ Ψi(f)

0

F∆
i (ζ)dζ = −Ψi(f)F∆

i (Ψi(f)) +

∫ Ψi(f)

0

F∆
i (ζ)dζ
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=

∫ Ψi(f)

0

F∆
i (ζ)dζ,

where we use integration by parts at (∗) and the definition of Ψi(f) at the last equality.
Finally, the proposition’s third equality now follows directly by applying Proposition 3.53.

Using this proposition we get the following relation between our two quality measures:

Corollary 3.76. For any Vickrey flow f and commodity i with finite makespan under f we have

Ξi(f) ≤ Ui(θ̂i) ·Ψi(f).

Proof. This follows directly from Proposition 3.75:

Ξi(f)
Prop. 3.75

=

∫ Ψi(f)

0

Ui(ζ)dζ −
∫ Ψi(f)

0

Zi(ζ)dζ ≤
∫ Ψi(f)

0

Ui(ζ)dζ ≤ Ui(θ̂i) ·Ψi(f).

3.3. Model Summary
For easier reference we repeat here the complete definition of the model introduced over the course of
this chapter:

Network: A feasible network N is given by a tuple (G, (τe), (νe), I, (uv,i), (Ti)) consisting of a
directed graph G = (V,E), free flow travel times τe ∈ R≥0 and capacities νe ∈ R>0 for all edges
e ∈ E, a finite set I of commodities and for each commodity i ∈ I a non-empty set Ti ⊆ V of
sink nodes and a locally integrable network inflow rate uv,i : R≥0 → R≥0 for every node v ∈ V .
Moreover, we assume that for every commodity i ∈ I and every node s ∈ V with us,i 6=a.e. 0
there exists some sink node t ∈ Ti which is reachable from s.

Dynamic flow: A dynamic flow f in such a network is a vector (f+
e,i, f

−
e,i) ∈ L1

loc(R≥0,R≥0)E×I×{±}.
Here, f+

e,i(θ) denotes the inflow rate of particles of commodity i into edge e at time θ and,
analogously, f−e,i(θ) denotes the (edge) outflow rate. For any such dynamic flow we define
the cumulative inflow (outflow) of commodity i into (from) edge e by F+

e,i(θ) :=
∫ θ

0
f+
e,i(ζ)dζ

(F−e,i(θ) :=
∫ θ

0
f−e,i(ζ)dζ). We drop the index i to refer to the associated anonymous flow (rates),

e.g. we define f+
e :=

∑
i∈I f

+
e,i. Finally, we denote the queue length on edge e at time θ by

Qe(θ) := F+
e (θ)− F−e (θ + τe), its current travel time by Ce(θ) := Qe(θ)

νe
+ τe and its current exit

time by Te(θ) := θ + Ce(θ).

Vickrey flow: A dynamic flow f is a Vickrey flow until some time ξ ∈ R̃≥0 if it satisfies the following
three properties:

• The queues of all edges operate at capacity until ξ, i.e. for all e ∈ E we have

f−e (θ + τe) =

{
νe, if Qe(θ) > 0

min { f+
e (θ), νe } , else

for almost all θ < ξ (6)

as well as Qe(0) = 0 (if ξ > 0).

• The queues of all edges operate fair until ξ, i.e. for all i ∈ I and e ∈ E we have

f−e,i(θ + τe) =

f−e (θ + τe) ·
f+
e,i(ϑ)

f+
e (ϑ)

, if f+
e (ϑ) > 0,

0, else
for almost all θ < ξ, (15)

where ϑ is chosen such that Te(ϑ) = θ + τe.
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• The flow satisfies strong flow conservation at all nodes until ξ, i.e. for all i ∈ I and v ∈ V
we have

ui,v(θ) +
∑

e∈δ−(v)

f−e,i(θ)−
∑

e∈δ+(v)

f+
e,i(θ)

{
= 0, if v ∈ V \ Ti
≥ 0, if v ∈ Ti

for almost all θ < ξ. (22)

There are also several equivalent characterisations for queues operating at capacity or fair given
in Propositions 3.19 and 3.40, respectively.

IDE: A Vickrey flow until ξ is an instantaneous dynamic equilibrium (IDE) until ξ if it addi-
tionally satisfies the following IDE-property for all i ∈ I and e ∈ E:

f+
e,i(θ) > 0 =⇒ e ∈ Ei(θ) for almost all θ < ξ (25)

where we denote by Ei(θ) := { e = vw ∈ E | Lv.i(θ) ≥ Ce(θ) + Lw,i(θ) } the set of active edges
for commodity i at time θ and by Lv,i(θ) := inf {

∑
e∈p Ce(θ) | p a v, t-path for some t ∈ Ti }

the current distance from node v to commodity i’s closest sink node.

3.4. Bibliographic Notes and Open Questions
The flow model introduced in Section 3.1 is the same which was also used in [GHS20; GH22; GH23]
which in turn is mostly based on the flow model used by Koch and Skutella in [KS11] and Cominetti,
Correa and Larré in [CCL15]. The alternative characterisations in Propositions 3.19 and 3.40 are
essentially a collection of several different ways the edge dynamics are defined in the literature. The
properties of the flow model deduced from these characterisation are also mostly well known (so much
in fact that they are often used without even explicitly stating them).
Our definition of IDE presented here was first introduced in [GH19] (which is a joint work with

Tobias Harks) and is based on the equilibrium definition in the full information model used e.g. in
[KS11; CCL15]. Note, that in [GH19] the node labels are directly defined by the recursive Bellman
equations (24) (which is possible there since only strictly positive free flow travel times are allowed
there).
We note that the physical and the behavioural model (i.e. Sections 3.1 and 3.2) are largely

independent of each other. This is what allowed us to reuse many properties of the physical model
originally shown in the full information setting to our model. At the same time, this also means that
one could easily replace the deterministic queuing model by another physical model while keeping our
behavioural model in order to define IDE with different flow dynamics. As long as the chosen physical
model is reasonable well-behaved (i.e. satisfies all or at least some of the fundamental properties stated
at the beginning of Section 3.1), it seems quite likely that several of our results in the coming chapters
could then be transferred to such a related model.

As a final remark we would also like to point out that even though the deterministic queuing model
is generally well understood there are also still some open questions related to it (cf. [Gai+22, Section
4.6]). One such example is the computational complexity of its network-loading procedure (i.e. the
network-wide analogue to the edge-loading function Φξe discussed in Corollary 3.46).
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4. Existence of IDE
In this chapter we will give several proofs for the existence of IDE in various different settings. The
proofs are ordered by decreasing generality (of instances for which they apply). As will become
important in the next chapter (Chapter 5), this coincides with increasing levels of constructiveness.
One common aspect of all proofs is the following general idea: To show the existence of an IDE it

suffices to show that, when given an IDE flow up to some point in time, we can always extend this to
an IDE up to some later point in time. Then, starting with the trivial IDE up to time 0, a simple
limit argument guarantees existence of an IDE for all times.

For dynamic equilibria in the full information setting this same approach (only for a different notion
of equilibrium flows up to a certain point in time) together with the nice combinatorial structure of
the individual extensions (so called “thin flows”) found by Koch and Skutella in [KS11] was and still is
one of the main sources for the recent progress in better understanding these equilibria in the last two
decades. As we will see in this chapter, IDE exhibit a very similar structure.

4.1. A Meta-Theorem on IDE-Existence
We start by formalising the concepts of partial IDE and IDE-extensions and then showing a meta-
theorem which basically states that in order to show existence of IDE it suffices to show that partial
IDE can always be extended.

Definition 4.1. For any network N we denote by

Fpa(N ) := F(N )× R̃≥0

the set of all partial flows in N . We call a partial flow (f, ξ) ∈ Fpa(N ) a partial Vickrey flow if
f is a Vickrey flow until ξ and a partial IDE if f is an IDE until ξ. We denote the set of all partial
IDE in N by F IDE

pa (N ) ⊆ Fpa(N ).
For any two partial flows (f, ξ), (f ′, ξ′) ∈ Fpa(N ) we then say that (f ′, ξ′) is an extension of (f, ξ)

(until ξ′) if ξ′ ≥ ξ and we have

f+
e,i

∣∣
[0,ξ)

=a.e. f
′+
e,i

∣∣
[0,ξ)

and f−e,i
∣∣
[0,ξ+τe)

=a.e. f
′−
e,i

∣∣
[0,ξ+τe)

for all e ∈ E, i ∈ I.

We denote this by (f, ξ) � (f ′, ξ′). Finally, we consider two partial flows to be equal as partial flows if
both (f, ξ) � (f ′, ξ′) and (f ′, ξ′) � (f, ξ) hold and denote this by (f, ξ) ≈ (f ′, ξ′).

Observation 4.2. For any two partial flows (f, ξ) and (f ′, ξ′) we have

(f, ξ) ≈ (f ′, ξ′) ⇐⇒ (f, ξ) � (f ′, ξ′) and ξ = ξ′.

Observation 4.3. For any two equivalent partial flows (f, ξ) ≈ (f ′, ξ′) we have that (f, ξ) is a partial
Vickrey flow/IDE if and only (f ′, ξ′) is a partial Vickrey flow/IDE. This is because the constraints
defining Vickrey flows/IDE up to some time ξ only depend on the edge inflow rates until ξ and the
edge outflow rates until ξ + τe.

Observation 4.4. If (f, ξ) and (f ′, ξ′) are two partial flows which are Vickrey edge flows until ξ on all
edges, then we have

(f, ξ) � (f ′, ξ′) ⇐⇒ ξ ≤ ξ′ and f+
e,i

∣∣
[0,ξ)

=a.e. f
′+
e,i

∣∣
[0,ξ)

for all e ∈ E, i ∈ I.

This follows directly from Corollary 3.43, i.e. the fact that in a Vickrey edge flow the edge outflow
rates until ξ + τe are uniquely determined by the edge inflow rates until ξ.

Observation 4.5. The relation � is a preorder on Fpa(N ).

This now allows us to state the following meta-theorem: Whenever we have some non-empty set of
partial flows which contains

a) a proper extension for every individual element of that set and
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b) a common extension for every sequence of elements in that set,

then this set also contains a flow for all time. In particular, this meta-theorem reduces the challenge of
proving existence of IDE (potentially with some additional property) to showing a) an extension-lemma
for such IDE and b) that limits of such IDE are again an IDE (still satisfying any required additional
property).

Theorem 4.6. Let N be any network and F ⊆ Fpa(N ) be some subset of all partial flows in N
satisfying the following properties:

1. F is non-empty.

2. For any (f, ξ) ∈ F with ξ <∞ there exists some (f ′, ξ+ε) ∈ F with ε > 0 and (f, ξ) � (f ′, ξ+ε).

3. For any (non-trivial) sequence (f (1), ξ1) � (f (2), ξ2) � . . . of partial flows in F, there exists some
(f, ξ) ∈ F with (f (k), ξk) � (f, ξ) for all k = 1, 2, . . . .

Then there exists a dynamic flow f̃ such that (f̃ ,∞) ∈ F.

Proof idea: Properties 1 and 3 are essentially just the conditions of Zorn’s Lemma specified for
our situation. Thus, the set F must contain a maximal element (f̃ , ξ̃) which, by property 2, must
satisfy ξ̃ =∞.

Proof. By Observation 4.5 (F,�) is a preordered set. Now, let J ⊆ F be a chain in F. If it is the
trivial chain (i.e. J = ∅) then any element of F is an upper bound – and such an element exists by
property 1.
Otherwise, we define ξ̂ := sup { ξ | ∃(f, ξ) ∈ J } and find an upper bound to J as follows:

1. Case: ∃(f̂ , ξ̂) ∈ J: Then this is an upper bound to J: Since J is totally ordered we have
(f, ξ) � (f̂ , ξ̂) or (f, ξ) � (f̂ , ξ̂) for every (f, ξ) ∈ J. In the latter case we then have ξ ≥ ξ̂

but also ξ ≤ ξ̂ by the definition of ξ̂. Thus, we have ξ = ξ̂ and, therefore, (f, ξ) � (f, ξ̂) by
Observation 4.2.

2. Case: @(f̂ , ξ̂) ∈ J: Then we have ξ < ξ̂ for all (f, ξ) ∈ J and we can fix some sequence
(f (k), ξk)k∈N∗ such that the sequence (ξk)k∈N∗ is non-descending and converges to ξ̂. Since J
is totally ordered, we have (f (k), ξk) � (f (k+1), ξk+1) or (f (k), ξk) � (f (k+1), ξk+1) for every k
and as (ξk) is a non-decreasing the latter also implies the former by Observation 4.2. Thus, by
property 3, there exists some (f ′, ξ′) ∈ F with (f (k), ξk) � (f ′, ξ′) for all k ∈ N∗. This (f ′, ξ′) is
then also an upper bound to J: For any (f, ξ) ∈ J there exists some k ∈ N∗ with ξ < ξk and,
therefore, (f, ξ) � (f (k), ξk) � (f ′, ξ′).

Thus, we can apply Zorn’s Lemma (Lemma 2.58) to obtain a maximal element (f, ξ) ∈ F. If ξ =∞,
then we are done. So, assume for contradiction that ξ <∞. Then, by property 2, we also have some
(f ′, ξ + ε) ∈ F with ε > 0 and (f, ξ) � (f ′, ξ + ε) – a contradiction to the maximality of (f, ξ).

Remark 4.7. It is possible to avoid Zorn’s Lemma in the proof above if one assumes additionally, that
the set F is closed under restriction (i.e. if (f, ξ) ∈ F and ξ′ < ξ then (f, ξ′) ∈ F as well) which will be
the case in all our applications of this theorem. See [GHS20, Theorem 3.4] for such a proof. However,
this alternative proof is still non-constructive as it still uses a limit argument together with a proof by
contradiction.
If there is some general lower bound on the ε in property 2, then existence follows by a simple

inductive argument and, thus, the proof becomes constructive – provided that the extension lemma
ensuring that property 2 holds is constructive itself.
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In the following we will use Theorem 4.6 to show existence of IDE by applying it to certain subsets
F ⊆ F IDE

pa (N ). The first property will always be trivially satisfied (e.g. by the zero-flow which is an
IDE until time 0). Ensuring the second property will be the main part of the proof and will be done
by appropriate “extension-lemmas” which we will see in the following sections (Lemmas 4.14 and 4.34
and Corollary 4.30). The third property will again be automatically satisfied since we can just take
the limit of any given chain of partial IDE to obtain the required upper bound to such a chain. This
can be formalised as follows:

Definition 4.8. Let (f (1), ξ1) � (f (2), ξ2) � . . . be an ascending sequence of partial flows in some
fixed network N . Then we define the limit of this sequence of partial flows by

lim
k

(f (k), ξk) := (f̂ , ξ̂) where

ξ̂ := lim sup
k

ξk

f+
e,i(θ) :=

{
f

(k),+
e,i (θ), if θ < ξk for some k

0, else

f−e,i(θ) :=

{
f

(k),−
e,i (θ), if θ < ξk + τe for some k

0, else
.

In order to show that this definition is not only well defined but also retains all relevant properties,
we need the following lemma:

Lemma 4.9. A dynamic flow f is a Vickrey flow/IDE until some ξ ∈ R̃≥0 if and only if it is a
Vickrey flow/IDE until ξ′ for every ξ′ < ξ.

Proof. The ‘only if’-part is clear. For the ‘if’-part let N ⊆ [0, ξ) be the set of all times where f violates
at least one of the constraints of being a Vickrey flow (an IDE), i.e. one of the constraints (6), (15)
and (22) (and (25)). Since (f, ξ′) is a partial Vickrey flow (an IDE) for all ξ′ < ξ, the set N ∩ [0, ξ′)
has measure zero for all those ξ′. But this then implies that N itself has measure zero. Thus, (f, ξ) is
a partial Vickrey flow (an IDE) as well.

Proposition 4.10. If, for every edge commodity i ∈ I and edge e ∈ E there exist some locally
integrable functions ge,i : R≥0 → R≥0 such that f+

e,i

∣∣
[0,ξk)

, f−e,i
∣∣
[0,ξk+τe)

≤a.e. ge,i, then limk(f (k), ξk)

is a well-defined dynamic flow with (f (k), ξk) � limk(f (k), ξk) for all k ∈ N0. Furthermore,

a) it is a partial flow with locally p-integrable flow rates if all ge,i are locally p-integrable,

b) it is a partial flow with right-constant flow rates if all (f (k), ξk) have right-constant flow rates,

c) it is a partial Vickrey flow if all (f (k), ξk) are partial Vickrey flows and

d) it is a partial IDE if all (f (k), ξk) are partial IDE.

Proof. We first show that f̂ is a dynamic flow. Take any edge e ∈ E and commodity i ∈ I and
observe that for every θ < ξ there exists some K ∈ N∗ with ξK > θ and therefore all (countably many)
f

(k)+
e,i for k ≥ K coincide on [0, θ] almost everywhere. Thus, f̂+

e,i is well-defined. Furthermore, the
functions f (k)+

e,i · 1[0,ξk) are measurable and converge pointwise almost everywhere to f̂+
e,i. Thus, f̂

+
e,i is

measurable as well by Proposition 2.8. Finally, f̂+
e,i is essentially bounded by the locally integrable

function ge,i and, hence, Proposition 2.13 implies that it is locally integrable. The same is true for f̂−e,i
just with all intervals extended by τe. Since all this is true for all edges and commodities, f̂ is indeed
a dynamic flow.
That limk(f (k), ξk) is an extension of each of the (f (k), ξk) now follows immediately from the

definition of limk(f (k), ξk).
We now show the additional properties:
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a) Since we have f̂+
e,i, f̂

−
e,i ≤ ge,i this follows directly from Proposition 2.13

b) For any θ ∈ [0, ξ̂) there exists some k ∈ N0 such that we have θ < ξk. Since f (k) has right-constant
flow rates, there exists some 0 < ε ≤ ξk − θ such that all edge inflow rates of f (k) are constant
on [θ, θ + ε). The same is then true for f̂ as we have f̂+

e,i

∣∣∣
[0,ξk)

=a.e. f
(k),+
e,i

∣∣∣
[0,ξk)

for all e ∈ E
and i ∈ I. An analogous argument for shows that the same is true for the edge outflow rates.

c),d) These two properties follow from Lemma 4.9: For any ξ′ < ξ̂ there exists some k ∈ N∗ such that
ξk ≥ ξ′. We then have (f̂ , ξ′) ≈ (f (k), ξ′) and (f (k), ξ′) is a partial Vickrey flow/IDE (by trivial
direction of Lemma 4.9). Thus, f̂ is a Vickrey flow/IDE until ξ′ as well by Observation 4.3.

Note that, for general dynamic flows, the assumptions on the existence of the bounding functions
ge,i is necessary since there are functions like x 7→ 1

1−x which is (locally) integrable on any interval
[0, ξ] with ξ < 1 but not on [0, 1]. However, for Vickrey flows this assumption can be dropped as
respecting capacity, strong flow conservation at nodes and local integrability of network inflow rates
together automatically guarantee the existence of such bounds:

Corollary 4.11. Let (f (1), ξ1) � (f (2), ξ2) � . . . be an ascending sequence of Vickrey flows/IDE
in some fixed network N . Then limk(f (k), ξk) is a partial Vickrey flow/IDE extending all (f (k), ξk).
Moreover, if the network inflow rates are locally p-integrable for some p ≥ 1, then limk(f (k), ξk) has
locally p-integrable flow rates as well.

Proof. For any edge e = vw ∈ E and commodity i ∈ I we define a function ge,i : R≥0 → R≥0 by
setting

ge,i(θ) := max { νe, uv,i(θ) +
∑

e′∈δ−(v)

νe′ } .

This function is clearly locally integrable (and even locally p-integrable if uv,i is so as well). Moreover,
for every k ∈ N∗ this function satisfies

f+
e,i(θ)

(22)
≤ ui,v(θ) +

∑
e′∈δ−(v)

f
(k),−
e′,i (θ)

(4)
≤ ui,v(θ) +

∑
e′∈δ−(v)

νe′ ≤ ge,i(θ)

for almost all θ ∈ [0, ξ) and

f
(k),−
e,i (θ)

(4)
≤ νe ≤ ge,i(θ)

for almost all θ ∈ [0, ξk + τe). Thus, we can apply Proposition 4.10 to show the corollary.

4.2. Extension Lemma for General Inflow Rates
In this section we want to show a general existence result for IDE in networks with locally p-integrable
network inflow rates for some p > 1. We will do so by showing that any partial IDE with locally
p-integrable flow rates can be extended for any additional finite time interval. Our meta-existence
theorem from the previous section then implies the existence of IDE for all time. Even more, we will
be able to deduce that any partial IDE (with locally p-integrable flow rates) can be extended to an
IDE for all time.

Note, that we restrict ourselves to p > 1 since then the space Lp([a, b])d is a reflexive Banach space
for any [a, b] ⊆ R and any d ∈ N∗ (cf. Propositions 2.40 and 2.43).

So, let N be some feasible network with locally p-integrable network inflow rates and (f, ξ) a partial
IDE with ξ <∞ and locally p-integrable flow rates. Furthermore, let ε > 0 be any (finite) extension
period. Our goal is then to find a partial IDE (g, ξ + ε) with (f, ξ) � (g, ξ + ε).

Proof idea: In order to show the existence of such an extension we will start with a set of
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candidates{
g = (g+, g−)

∣∣∣∣ (f, ξ) � (g, ξ + ε), g respects capacity and
satisfies strong flow conservation at all nodes until ξ + ε

}
.

Clearly, any actual extension of (f, ξ) is contained in this set. Moreover, it is easy to see that
this set is non-empty. However, this set of course also contains many flows which are not IDE-
extensions as we are missing both the IDE-property and the constraints for the flow dynamics on
the edges. Thus, we will additionally define a mapping Γ which for any such candidate g gives us
the set of candidates h such that

• the inflow rates of h satisfy the IDE-property with respect to the current travel times
induced by g and

• the outflow rates of h satisfy the Vickrey edge flow dynamics together with the edge inflow
rates of g.

It is again easy to see that there always exists at least one such candidate h as we can just derive
h− from g+ using the Vickrey edge flow dynamics and then send all this flow further on into
some edge which is active for g.
If now, we can find some candidate g which gets mapped to itself by Γ, then we have found

the desired extension. To get such a fixed point of the mapping Γ we will then use the Kakutani–
Fan–Glicksberg fixed point theorem.

Before we can start our formal proof we define the set

K :=


g = (g+, g−) ∈
Lp(R≥0,R≥0)E×I×{±}

∣∣∣∣∣∣∣∣∣
(f, ξ) ≈ (g, ξ), g respects the edge capacities and
satisfies strong flow conservation at all nodes until ξ + ε,
g+
e,i

∣∣
[ξ+ε,∞)

=a.e. 0, g−e,i
∣∣
[ξ+ε+τe,∞)

=a.e. 0 f.a. e ∈ E, i ∈ I,
g+
e,i

∣∣
[ξ,ξ+ε)

=a.e. 0 for all e = vw ∈ E, i ∈ I with w ∈ V †i

 (28)

as well as the correspondence

Γ : K → 2K , g 7→

 h ∈ K

∣∣∣∣∣∣
(g+
e,�, h

−
e,�) is a Vickrey flow until ξ + ε for all e ∈ E and

h+
e,i(θ) = 0 for all e = vw ∈ E, i ∈ I and almost all θ ∈ R≥0

with Lgv,i(θ) < Lgw,i(θ) + Cge (θ)

 . (29)

The additional constraints in the definition of set K (compared to the set of candidates from our
proof idea) are there to ensure that the set K is (weakly) compact and that Γ(g) is non-empty for any
g ∈ K. It is easy to see that a fixed point of Γ is a partial IDE until ξ. So the main part of the proof
is to show that K and Γ satisfy the conditions of the Kakutani–Fan–Glicksberg fixed point theorem
(Theorem 2.56) which then guarantees the existence of such a fixed point.

Lemma 4.12. For any feasible network with locally p-integrable network inflow rates and any partial
IDE with locally p-integrable flow rates the set K is non-empty, convex, weakly and sequentially weakly
compact (i.e. (sequentially) compact with respect to the weak topology on Lp(R≥0)).

Proof. Convexity of K is clear since all constraints defining this set are linear. The set is non-empty as
well, as it contains at least the following flow: For any commodity i ∈ I and any node v ∈ V \ (V †i ∪Ti)
we choose some edge ev,i ∈ δ+(v)\δ−(V †i ) (such an edge must exist as otherwise v would be a dead-end
node for commodity i). We then define g by setting

g−e,i(θ) :=

{
f−e,i(θ), if θ < ξ + τe

0, else

and

g+
e,i(θ) :=


f+
e,i(θ), if θ < ξ

uv,i(θ) +
∑
e′∈δ−(v) g

−
e,i(θ), if θ ∈ [ξ, ξ + ε) and e = ev,i

0, else
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for all e ∈ E, i ∈ I and θ ∈ R≥0. Since f−e,i, f
+
e,i and uv,i are all locally p-integrable, g−e,i and g+

e,i

are so as well. As they have bounded support we even have g−e,i, g
+
e,i ∈ Lp(R≥0). Moreover, this flow

respects the capacities of all edges since f does so until ξ. For the same reason it also satisfies strong
flow conservation at all nodes until ξ. For [ξ, ξ + ε) we show this flow conservation by distinguishing
three cases:

1. Case: v ∈ V \ (V †i ∪ Ti): Here, we have

uv,i(θ) +
∑

e∈δ−(v)

g−e,i(θ) = g+
ev,i,i

(θ) =
∑

e∈δ+(v)

g+
e,i(θ)

for all θ ∈ [ξ, ξ + ε).

2. Case: v ∈ Ti: In this case we have g+
e,i(θ) = 0 for all outgoing edges from v during [ξ, ξ + ε).

Hence, strong flow conservation holds at v since v is a sink.

3. Case: v ∈ V †i : Here, we also have g+
e,i(θ) = 0 for all e ∈ δ+(v) during [ξ, ξ + ε). Thus, we have

to show that we also have uv,i(θ) =a.e. 0 and g−e,i(θ) =a.e. 0 for all e ∈ δ−(v) during that time.
The first part holds since the network is feasible. The second part follows directly from our
definition of g− for θ ≥ ξ + τe, so we only have to consider times θ ∈ [ξ, ξ + τe) here and,
in particular, only those edges with τe > 0. For those edges Proposition 3.66 ensures that
we have g−e,i(θ) = f−e,i(θ) = 0 for all θ < ξ + τe (note that there must be some time ξ′ ≤ ξ

with T fe (ξ′) = ξ + τe and then f is an IDE until ξ′ and (f+
e,�, f

−
e,�) a Vickrey edge flow until

ξ′ + Qe(ξ
′)

νe
).

The remaining constraints follow directly from the definition of g. Thus, we have g ∈ K.
Finally, K is weakly compact since it is convex, bounded (both network-inflow and edge outflow

rates are bounded – thus, the edge inflow rates are bounded as well due to strong flow conservation
at the nodes) and closed (with respect to the strong topology) subset of a reflexive space (cf.
Proposition 2.41). Sequential weak compactness then follows as well since K is a subset of a normed
space (cf. Proposition 2.35).

Lemma 4.13. For any feasible network with locally p-integrable network inflow rates and any partial
IDE with locally p-integrable flow rates the mapping Γ has a closed graph (with respect to the weak
topology) and non-empty convex images.

Proof. We first note that for any g ∈ K and h, h′ ∈ Γ(g) we have h− =a.e. h
′−. This is, because for

Vickrey edge flows the outflow rates are uniquely determined by the edge inflow rates (cf. Corollary 3.43).
Convexity of Γ(g) is then obvious as the other constraint defining Γ(g) is just a linear constraint.
To show Γ(g) 6= ∅ we can find an element in Γ(g) by defining all h−e,i on [0, ξ + ε+ τe] such that all
(g+
e,�, h

−
e,�) are Vickrey edge flows until ξ + ε (this is always possible by Corollary 3.43) and set them

to zero on [ξ + ε + τe,∞). This, in particular, implies h−e,i
∣∣
[0,ξ+τe)

=a.e. f
−
e,i

∣∣
[0,ξ+τe)

since we have

g+
e,i

∣∣
[0,ξ)

=a.e. f
+
e,i

∣∣
[0,ξ)

and f is a Vickrey flow until ξ.

In order to define h+
e,i we first observe that for any commodity i and any node v ∈ V \ (V †i ∪ Ti)

there will always be at least one outgoing active edge with respect to g (cf. Proposition 2.67e)). Thus,
for any such node v we can partition [ξ, ξ + ε) into measurable subsets (Mv,e)e∈δ+(v) such that for
every time θ ∈ [ξ, ξ + ε) we have

θ ∈Mv,e =⇒ e ∈ Egi (θ).

We now define

h+
e,i(θ) :=


f+
e,i(θ), if θ < ξ

uv,i(θ) +
∑
e′∈δ−(v) h

−
e,i(θ), if θ ∈Mv,e, e = vw, v ∈ V \ (V †i ∪ Ti)

0, else
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for all e ∈ E, i ∈ I and θ ∈ R≥0. This gives us locally p-integrable flow rates such that h+ only
uses active edges (with respect to g) until ξ + ε and is zero afterwards. Strong flow conservation at
all nodes can be shown in essentially the same way as in the proof of Lemma 4.13: It holds until ξ
since we have (h, ξ) ≈ (f, ξ) and the latter is a partial Vickrey flow. Afterwards, it holds at all nodes
v ∈ V \ V †i by our definition and at all dead-end nodes v ∈ V †i provided that we have h−e,i(θ) = 0 for
all e ∈ δ−(v) and almost all θ ∈ [ξ, ξ + ε) (note that, again, we have uv,i =a.e. 0 for all such nodes v as
the network is feasible). We show this by distinguishing two cases:

1. Case: ξ + ε < τe: In this case we immediately get h−e,i(θ) = 0 for almost all θ < ξ + ε since
(g+
e,�, h

−
e,�) is a Vickrey edge flow until ξ + ε > 0 and, therefore, satisfies h−e,i(θ) = 0 for almost

all θ < τe.

2. Case: ξ + ε ≥ τe: In this case we define ϑ := max { θ ≤ ξ | Te(θ) ≤ ξ + ε }. By Proposition 3.66
we then have h−e,i(θ) = 0 for almost all θ ∈ [ξ, Te(ϑ)). If Te(ϑ) = ξ + ε, then we are done.
Otherwise, we have ϑ = ξ and

H−e,i(ξ + ε)
(#)

≤ G+
e,i(ξ + ε)

(∗)
= G+

e,i(ξ)
(#)
= H−e,i(Te(ξ)) = H−e,i(Te(ϑ)),

where we used g ∈ K at (∗) and the fact that (g+
e,�, h

−
e,�) is a Vickrey edge flow until ξ+ ε at (#).

This, now implies h−e,i(θ) = 0 for almost all θ ∈ [Te(ϑ), ξ + ε).

Thus, we have h ∈ Γ(g) and, therefore, Γ(g) 6= ∅.
It now remains to show that Γ has a closed graph. We will accomplish this by showing that the

graph of Γ is weakly sequentially compact using the continuity properties of the edge loading as well
as the mapping from flows rates to distance labels (Corollaries 3.45 and 3.46 and Proposition 3.63).
Since

(
Lp(R≥0)E×I×{+,−})2 is a normed space, this is enough to show that the graph of Γ is weakly

compact (cf. Proposition 2.35). Since
(
Lp(R≥0)E×I×{+,−})2 is Hausdorff with respect to the weak

topology (see Propositions 2.34 and 2.43), this implies that the graph of Γ is also weakly closed.
So, let (g(n), h(n)) ∈ graph(Γ)N

∗
be a sequence in the graph of Γ. We want to show that it has a

subsequence converging in graph(Γ). Since K ×K is weakly sequentially compact by Lemma 4.12
and Proposition 2.43, there exists a subsequence of (g(n), h(n)) converging to some (g, h) ∈ K ×K.
By some abuse of notation we will also denote this subsequence by (g(n), h(n)). We now want to show
that (g, h) ∈ graph(Γ) or, equivalently, h ∈ Γ(g).
For any edge e ∈ E we have h(n),−

e,� = Ψξ+ε
e (g

(n),+
e,� )

w−→ Ψξ+ε
e (g+

e,�) by Corollary 3.46, where Ψξ+ε
e

is the mapping from inflow rates to outflow rates. At the same time we have h(n),−
e,�

w−→ h−e,� and,
therefore, Ψξ+ε

e (g+
e,�) = h−e,� as limit points in Hausdorff spaces are unique and Lp(R≥0)I is a Hausdorff

space with respect to the weak topology (cf. Proposition 2.34). Thus, h satisfies the first property
required of elements in Γ(g).

Now, assume that h does not satisfy the second property, i.e. there exist some γ > 0, e = vw ∈ E, i ∈ I
and a subset J ⊆ R≥0 of positive measure such that we have h+

e,i > 0 on J and Lgv,i + γ ≤ Lgw,i + Cge

on J . As g(n),+
e,i converges weakly to g+

e,i, the edge flows (g
(n),+
e,� , g

(n),−
e,� ) converges weakly to (g+

e,�, g
−
e,�)

by Corollary 3.46, the travel times Cg
(n)

e converge uniformly to Cge by Corollary 3.45 and the
distance labels Lg

(n)

v′,i converge uniformly to Lgv′,i for all v
′ ∈ V by Proposition 3.63. Thus, we have

Lg
(n)

v,i + γ
2 ≤ L

g(n)

w,i +Cg
(n)

e on J for large enough n. But at the same time we also have
∫
J
h

(n),+
e,i (ζ)dζ > 0

for large enough n since h(n),+
e,i converges weakly to h+

e,i – a contradiction to (g(n), h(n)) ∈ graph(Γ).
Thus, we do have h ∈ Γ(g) and, hence, graph(Γ) is weak sequentially compact. This then implies,

as described before, that graph(Γ) is weakly closed.

Lemma 4.14. Let N be a feasible network with locally p-integrable network inflow rates and (f, ξ) a
partial IDE in N with p-integrable flow rates. Then, for any ε > 0 there exists a partial IDE (g, ξ + ε)
in N with p-integrable flow rates and which extends (f, ξ).

75



Proof. Lp(R≥0) equipped with the weak topology is a locally convex Hausdorff space (cf. Proposi-
tion 2.34) and, thus, so is Lp(R≥0)E×I×{+,−} (equipped with the product topology). Lemmas 4.12
and 4.13 then allow us to apply Theorem 2.56 in order to obtain a fixed point g ∈ K. The definition
of K then already ensures that g satisfies strong flow conservation at all nodes until ξ + ε and that it
is an extension of (f, ξ), while g ∈ Γ(g) means that g is a Vickrey edge flow until ξ + ε on all edges
and satisfies the IDE property until ξ + ε. Hence, (g, ξ + ε) is a partial IDE extending (f, ξ).

With this extension lemma we now immediately get our first existence result for IDE:

Theorem 4.15. Let N be a feasible network with locally p-integrable network inflow rates for some
p > 1. Then any partial IDE with p-integrable flow rates can be extended to an IDE for all times. In
particular, there exists an IDE (for all times) in N .

Proof. We want to apply Theorem 4.6: So, let (f, ξ) be a partial IDE with p-integrable flow rates and
define

F := { (g, ξ′) ∈ F IDE
pa (N ) | (f, ξ) � (g, ξ′), g has locally p-integrable flow rates } .

This set is clearly not empty (as it contains at least (f, ξ)). Furthermore, it satisfies property 2 due to
Lemma 4.14 and property 3 because of Corollary 4.11. Thus, Theorem 4.6 shows the existence of an
IDE (f,∞) ∈ F.
The existence of IDE now follows from the observation that the zero-flow is always an IDE until

ξ = 0.

Remark 4.16. It is interesting to note that this existence proof is largely independent of both the
underlying physical and the behavioural model. More precisely, we essentially only use the following
properties of our model:

• The edge dynamics induce a well defined edge loading function Φe (Corollary 3.43) which is
sequentially weak-weak continuous (Corollary 3.46).

• The distance labels are defined such that the mapping from flow rates to distance labels is
sequentially weak-strong continuous (Corollary 3.45 and Proposition 3.63).

• Changing a partial flow (f, ξ) after time ξ does not affect whether it is a partial IDE up to
time ξ.

Thus, the existence proof in this section should be easily adaptable to other models satisfying these
properties, e.g. flow dynamics induced by the linear edge delay model (cf. e.g. [CM02, Section 4]) or
distance labels derived from other predictions depending only on the past flow (e.g. causal predictors
as defined in [GHKM23, Definition 4]).

4.3. Extension-Lemmas using IDE-Thin Flows
In this section we consider the case of networks with right-constant network inflow rates and show
extension-lemmas for partial flows with right-constant edge inflow rates3 (by Corollary 3.44 such a
flow automatically also has right-constant edge outflow rates). By choosing the extension period small
enough we can then ensure that all in- and outflow rates are constant during this period. Thus, we can
describe the extension by a single value (instead of a whole function) for every edge-commodity pair.
In other words, the goal is to find a constant extension of a given partial IDE for some proper

interval. Such an extension is, therefore, completely determined by the length ε > 0 of the extension
interval and for every commodity i and edge e a number x+

e,i ≥ 0 denoting the constant inflow rate of

3Recall that for right-constant functions [f ] ∈ Lp
loc(R≥0) we always assume that we are using the unique right constant

representative of this equivalence class. In particular, we are allowed to evaluate such functions at individual points
(cf. Definition 2.20).
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commodity i into edge e during the extension interval. If (f, ξ) is the given partial IDE, the extension
(g, ξ + ε) is then defined by

g+
e,i(θ) :=

{
f+
e,i(θ), if θ < ξ

x+
e,i, if θ ≥ ξ.

g−e,i such that (g+
e,�, g

−
e,�) is a Vickrey edge flow

(30)

where the outflow rates are uniquely defined according to Corollary 3.43. This clearly is an extension
of (f, ξ) with queues operating fair and at capacity on all edges until ξ + ε. To ensure that it is also a
partial IDE (up to time ξ + ε) we have to verify that g satisfies strong flow conservation at all nodes
and only enters active edges between ξ and ξ + ε. Since all edge in- and outflow rates are constant
right after ξ and, therefore, all distance labels are linear for some time, it actually suffices to check
whether these two conditions hold at ξ and whether they will continue to holds for the immediate
future. Then we can just choose ε small enough such that this does not change before ξ + ε.
For flow conservation at the nodes we introduce additional variables x−e,i ≥ 0 representing the

edge outflow rates for the extension interval [ξ, ξ + ε). Given the edge inflow rates x+
e,i and the

partial flow (f, ξ) we can compute these outflow rates as follows (cf. Corollary 3.44): For edges
e ∈ E0(ξ) := { e ∈ E | τe = 0, qe(ξ) = 0 } with a current travel time of zero at time ξ by

x−e,i =
x+
e,i · νe

max {x+
e , νe }

, (31)

where we use x+
e as shorthand for

∑
j∈I x

+
e,j , and for all other edges e ∈ E \ E0(ξ) by

x−e,i = f−e,i(ξ). (32)

Note that, for (32) we assume that for edges with free flow travel time zero (f+
e,�, f

−
e,�) is a Vickrey edge

until some time ξ + β with β > 0. We can do this without any effect on the sought-after extension
g since for edges e with Te(ξ) > 0 the outflow rates of a Vickrey edge flow are already completely
determined by the inflow rates until time ξ (Corollary 3.43). Flow conservation at nodes for the
extension interval then translates to the condition∑

e∈δ+(v)

x+
e,i = uv,i(ξ) +

∑
e∈δ−(v)

x−e,i (33)

for all i ∈ I, v ∈ V \ Ti and ∑
e∈δ+(t)

x+
e,i ≤ ut,i(ξ) +

∑
e∈δ−(t)

x−e,i (34)

for all sink nodes t ∈ Ti (cf. Proposition 3.52).
For the IDE-condition of only entering active edges we first of all require flow to only enter edges

which are active at time ξ, i.e.

x+
e,i = 0 for all e ∈ E \ Ei(ξ). (35)

However, this is not enough to guarantee for the IDE-condition to hold for any proper interval after ξ
as – depending on the edge inflow rates – waiting times may change and edges might become inactive
immediately after ξ (note that the opposite, i.e. edges becoming newly active, is not a problem due to
the continuity of the travel times). To ensure that we only use active edges which also stay active for
some proper time interval we introduce another set of variables av,i ∈ R representing the derivative of
the node labels during the extension interval.
Note that, by Proposition 2.67a), we have Lv,i(θ) = ∞ for some time θ if and only if we have

Lv,i ≡ ∞. Thus, we will define the derivative of such a constantly infinite function to be 0. We can
then compute these derivatives from the edge inflow rates (cf. Definition 3.60) by

av,i = min

{∑
e∈p

ψe(x
+
e )

∣∣∣∣∣ p ∈ Pv,i(ξ)
}
, (36)
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for all i ∈ I and v ∈ V \ V †i and

ai,v = 0 (37)

for all i ∈ I and v ∈ V †i . Here, ψe denotes the change of the waiting time on edge e depending on the
aggregated inflow rate xe (cf. Proposition 3.19b)), i.e.

ψe : R≥0 → R, xe 7→

{
xe
νe
− 1, if Qe(ξ) > 0

max
{
xe
νe
− 1, 0

}
, else

. (38)

The condition that used edges stay active for some time after ξ is can now be formally stated as:

av,i = ψe(x
+
e ) + aw,i for all e = vw ∈ E with x+

e,i > 0. (39)

Thus, finding an extension to a partial IDE with right-constant flow rates is equivalent to finding a
vector (x+, x−, a) ∈ RE×I≥0 × RE×I≥0 × RV×I satisfying eqs. (31) to (37) and (39). This motivates the
following definition of IDE-thin flows in analogy to the thin flows with resetting for dynamic equilibria
introduced in [KS11, Definition 6]:

Definition 4.17. Let (f, ξ) be a partial IDE with right-constant flow rates and a Vickrey edge flow
for all edges and all times. Then a vector (x+, x−, a) ∈ RE×I≥0 × RE×I≥0 × RV×I an IDE-thin flow for
(f, ξ) if it is a solution to the following system of equations:

x−e,i =
x+
e,i · νe

max {x+
e , νe }

for all i ∈ I, e ∈ E0(ξ) (31)

x−e,i = f−e,i(ξ) for all i ∈ I, e ∈ E \ E0(ξ) (32)∑
e∈δ+(v)

x+
e,i = uv,i(ξ) +

∑
e∈δ−(v)

x−e,i for all i ∈ I, v ∈ V \ Ti (33)

∑
e∈δ+(t)

x+
e,i ≤ ut,i(ξ) +

∑
e∈δ−(t)

x−e,i for all i ∈ I, t ∈ Ti (34)

x+
e,i = 0 for all e ∈ E \ Ei(ξ) (35)

av,i = min

{∑
e∈p

ψe(x
+
e )

∣∣∣∣∣ p ∈ Pv,i(ξ)
}

for all i ∈ I, v ∈ V \ V †i (36)

av,i = 0 for all i ∈ I, v ∈ V †i (37)

av,i = ψe(x
+
e ) + aw,i if x+

e,i > 0 for all i ∈ I, v ∈ V, e = vw ∈ δ+(v). (39)

Remark 4.18. It should be noted that, in contrast to the thin flows with resetting in the full information
setting, the values x+

e,i of our IDE-thin flows do not form a static flow in the given network. This is
because, with the exception of edges of free flow time zero, there is no direct connection between the
inflow and outflow rates of any edge at time ξ.
Our goal for the rest of this section will now be to first formally show that IDE-thin flows can

always be used to extend partial IDE with right-constant flow rates and then derive extension-lemmas
from this by providing sufficient conditions for the existence of IDE-thin flows. Our first step on this
path is to collect several basic properties of IDE-thin flows:

Proposition 4.19. The property of being an IDE-thin flow is well defined for partial flows, i.e. if
(f, ξ) ≈ (f ′, ξ) are two equivalent partial flows, then any vector (x+, x−, a) is an IDE-thin flow for
(f, ξ) if and only if it is an IDE-thin flow for (f ′, ξ).

Proof. This immediately clear for eqs. (31), (33) to (37) and (39) since the sets E0(ξ) and Ei(ξ) as
well as the queue length at time ξ are completely determined by the inflow rates on [0, ξ) and the
outflow rates [0, ξ+ τe). For eq. (32) it follows from Corollary 3.43 since for (32) we assume that f−e,i is
defined on some slightly larger time interval [0, ξ + β) in such a way that (f+

e,�, f
−
e,�) becomes a Vickrey

edge flow until ξ + β > ξ in case we have τe = 0 (and equivalently so for f ′).
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Proposition 4.20. Let (x+, x−, a) be an IDE-thin flow for some partial IDE (f, ξ) and i ∈ I any
commodity. Then (av,i)v∈V \V †i

are node labels in the active subgraph G(ξ) := (V \V †i , E[V \V †i ]∩Ei(ξ))
with edge costs (ψe(x

+
e ))e∈E[G(ξ)] satisfying the properties a) to m) in Proposition 2.67.

Proof. Since f satisfies weak flow conservation until ξ, we get from Proposition 2.67l) (cf. Remark 3.61)
that Pv,i(ξ) contains exactly those v, Ti-paths consisting exclusively of edges in Ei(ξ). Thus, (36) is
equivalent to the definition of node labels in G(ξ) with edge costs (ψe(x

+
e ))e∈E[G(ξ)].

Moreover, for any cycle c in G′ we have Cc(ξ) = 0 by Proposition 2.67h) and, therefore, Ce(ξ) = 0
for all edges e ∈ c. This, in turn, implies ψe(x+

e ) ≥ 0 for all such edges. Similarly, we have Cp(ξ) = 0
for any Ti, Ti-path in G′ by Proposition 2.67k) and, hence, Ce(ξ) = 0 and ψe(x+

e ) ≥ 0 for all edges e
on such a path. Thus, all the properties a) to m) in Proposition 2.67 hold for (av,i)v∈V \V †i

as well.

Proposition 4.21. The mapping

RE×I≥0 → RV×I , (x+
e,i)e,i 7→ (av,i) such that (x+, a) satisfy eqs. (36) and (37)

is well defined and continuous.

Proof. By Proposition 2.67b) the set Pv,i(ξ) is non-empty for any node v ∈ V \V †i . Thus, the minimum
in (36) is well defined for any such node as it is taken over a finite non-empty set. This already shows
that the given mapping is well defined. Continuity then follows directly from the continuity of the
function ψe which, in turn, follows directly from its definition (see (38)).

The following proposition now states that there is indeed a one-to-one correspondence between
IDE-thin flows and constant extensions of partial IDE with right-constant flow rates.

Proposition 4.22. Let (f, ξ) be a partial IDE with right-constant in- and outflow rates which is a
Vickrey edge flow for all times on all edges in a network with right-constant network inflow rates.
A vector x+ ∈ RE×I≥0 defines a non-trivial constant extension of (f, ξ) via (30) to some partial IDE
(g, ξ + ε) if and only if there exist vectors x− ∈ RE×I≥0 and a ∈ RV×I such that (x+, x−, a) is an
IDE-thin flow for f at ξ.

In this case we have g−e,i(θ) = x−e,i and ∂L
g
v,i(θ) = av,i during the extension period.

Proof. Sufficiency: Given an IDE-thin flow (x+, x−, a) we first want to determine some ε > 0 such
that a constant extension is possible for an interval of length ε. First, we need to ensure that
the edge outflow rates do not change during the interval:

ε1 := min
{

max
{
ε′ ≤ Ce(ξ)

∣∣∣ f−e,i∣∣[ξ,ξ+ε′) constant
} ∣∣∣ e ∈ E \ E0(ξ)

}
Similarly, the network inflow rates should stay constant for our extension interval:

ε2 := max
{
ε′ ≥ 0

∣∣∣ uv,i|[ξ,ξ+ε′) is constant for all i ∈ I, v ∈ V
}

Next, no queues should deplete during the extension period (as this changes the rate at which
the travel time along that edge changes):

ε3 := sup
{
ε′ ≥ 0

∣∣ Qe(ξ) + ε′(x+
e − νe) ≥ 0 for all e ∈ E with Qe(ξ) > 0

}
Finally, we have to ensure that no path becomes newly active during the extension interval:

ε4 := max

{
ε′ ≥ 0

∣∣∣∣ Lv,i(ξ) + ε′ · av,i ≤ Cp(ξ) + ε′ ·
(∑

e∈p ψe(x
+
e )
)

for all i ∈ I, v ∈ V and all non-active v, Ti-paths p for i at time ξ

}
We now choose ε := min { ε1, ε2, ε3, ε4 }. This is a strictly positive number since all four εk are
positive:

• ε1 > 0 because the edge outflow rates of f are assumed to be right-constant and by the
definition of the set E0(ξ) we have Ce(ξ) > 0 for all e ∈ E0(ξ),
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• ε2 > 0 because the network-inflow rates are assumed to be right-constant,
• ε3 > 0 because the left side of the inequality is continuous in ε′ and strictly larger than 0

for ε′ = 0 and
• ε4 > 0 because both sides of the inequality are continuous in ε′, the inequality is strict for
ε′ = 0 (by the definition of (non-)active paths).

We will show that extending (f, ξ) by constant edge inflow rates (x+
e,i) for [ξ, ξ + ε) results

in a partial IDE (g, ξ + ε). By construction g is already a Vickrey edge flow on every edge.
Furthermore, since we have (f, ξ) � (g, ξ + ε) (cf. Observation 4.4), we also know that the
IDE-property and strong flow conservation at all nodes holds until ξ. Thus, it suffices to check
that these two properties also hold during the extension interval. For this, we show that during
the extension interval [ξ, ξ + ε) the variables av,i and x−e,i fulfil their role correctly:
Claim 5. For all i ∈ I, e ∈ E, v ∈ V , paths p and θ ∈ [ξ, ξ + ε) we have

• g−e,i(θ) = x−e,i,

• Qge(θ) = Qe(ξ) + (θ − ξ) · νe · ψe(x+
e ),

• Cgp (θ) = Cp(ξ) + (θ − ξ)
∑
e∈p ψe(x

+
e ) and

• Lgv,i(θ) = Lv,i(ξ) + (θ − ξ) · av,i.

Proof. Outflow rates: For all edges e ∈ E0(ξ) we have

g−e,i(θ)
Cor. 3.44

=
g+
e,i(ξ)νe

max { g+
e (ξ), νe }

(30)
=

x+
e,iνe

max {x+
e , νe }

(31)
= x−e,i.

For all other edges e ∈ E \ E0(ξ) we have

g−e,i(θ) = f−e,i(θ) = f−e,i(ξ)
(32)
= x−e,i,

where the second equality holds since ε was chosen such that f−e,i is constant on [ξ, ξ + ε)
and the first equality holds by Corollary 3.43 since we have

T fe (ξ) = ξ + Cfe (ξ) ≥ ξ + ε1 ≥ ξ + ε > θ

by our choice of ε.
Queue lengths: This follows directly from Corollary 3.43 and the definition of ψe and the fact

that we chose ε such that no queue depletes before time ξ + ε:

Qge(θ)
Cor. 3.43

=

{
Qge(ξ) + (θ − ξ)νe max {x+

e − νe, 0 } , if Qge(ξ) = 0
Qge(ξ) + (θ − ξ)νe(x+

e − νe), if Qge(ξ) > 0

(38)
= Qe(ξ) + (θ − ξ)νeψe(x+

e ).

Path travel times: This follows directly from the the previous result for the queue length
functions: For all paths p and times θ ∈ [ξ, ξ + ε) we have:

Cgp (θ) =
∑
e∈p

Cge (θ) =
∑
e∈p

(
τe +

Qge(θ)
νe

)
=
∑
e∈p

(
τe + Qe(ξ)

νe
+ (θ − ξ)ψe(x+

e )
)

=
∑
e∈p

Ce(ξ) + (θ − ξ)
∑
e∈p

ψe(x
+
e ) = Cp(ξ) + (θ − ξ)

∑
e∈p

ψe(x
+
e ).

Node distances: Here we distinguish between two cases:
1. Case: v ∈ V †i : Then there are no v, Ti-paths and, thus, we have

Lgv,i(θ)
Prop. 2.67a)

= ∞ =∞+ (θ − ξ) · 0 Prop. 2.67a),(37)
= Lv,i(ξ) + (θ − ξ) · av,i

for all θ ∈ [ξ, ξ + ε).
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2. Case: v /∈ V †i : Then the set Pv,i(ξ) is non-empty by Proposition 2.67b). In particular,
there exists a v, Ti-path p with

p ∈ arg min

∑
e∈p′

ψe(x
+
e )

∣∣∣∣∣∣ p′ ∈ Pv,i(ξ)
 .

Using the previous result on path travel times and the fact that p is active for
commodity i at time ξ, this path then satisfies

Cgp (θ) = Cp(ξ) + (θ − ξ)
∑
e∈p

ψe(x
+
e )

(36)
= Cp(ξ) + (θ − ξ)av,i = Lv,i(ξ) + (θ − ξ)av,i.

We now want to show that p remains active for the whole interval [ξ, ξ+ ε). So, take
any other path p′ ∈ Pv,i(ξ) and observe that by the choice of p we then have

Cgp′(θ) = Cp′(ξ) + (θ − ξ)
∑
e∈p′

ψe(x
+
e ) ≥ Cp(ξ) + (θ − ξ)

∑
e∈p

ψe(x
+
e ) = Cgp (θ)

for all θ ∈ [ξ, ξ + ε). On the other hand, for any v, Ti-path p′ not active at time ξ
the choice of ε4 guarantees

Cgp′(θ) = Cp′(ξ) + (θ − ξ)
∑
e∈p′

ψe(x
+
e ) ≥ Lv,i(ξ) + (θ − ξ)av,i = Cgp (θ).

Thus, p remains active for the whole interval [ξ, ξ + ε) and, therefore, we have

Lgv,i(θ) = Cgp (θ) = Lv,i(ξ) + (θ − ξ) · av,i

for all θ ∈ [ξ, ξ + ε). �

With this claim strong flow conservation at the node now follows directly from eqs. (33) and (34)
(note that the choice of ε3 ensures that all network inflow rates are constant on [ξ, ξ + ε)).
Similarly, the IDE-property now follows directly from eq. (39) as for any edge e = vw with
positive inflow of commodity i during the extension interval we get:

Lgv,i(θ)
Claim 5

= Lv,i(ξ) + (θ − ξ)av,i
(39)
= Lv,i(ξ) + (θ − ξ)

(
ψe(x

+
e ) + aw,i

)
Claim 5

= Lv,i(ξ) + 1
νe
· (Qge(θ)−Qe(ξ)) + Lgw,i(θ)− Lw,i(ξ)

= Lv,i(ξ)−
(
Qe(ξ)
νe

+ Lw,i(ξ)
)

+ Lgw,i(θ) +
Qge(θ)
νe

(35)
= τe + Lgw,i(θ) +Qge(θ) = Cge (θ) + Lgw,i(θ),

for all θ ∈ [ξ, ξ + ε) which shows that e is active for commodity i during the whole extension
interval.

Neccessity: Let (f, ξ) � (g, ξ + ε) be two partial IDE with right-constant flow rates and ε > 0
chosen such that we have g+

e,i

∣∣
[ξ,ξ+ε)

= x+
e,i for all e ∈ E and i ∈ I. We define vectors (x−e,i)

and (av,i) by setting x−e,i := g−e,i(ξ) and av,i := ∂+L
g
v,i(ξ) and claim that (x+, x−, a) is then an

IDE-thin flow for (f, ξ). As in the proof of Proposition 4.19 we observe that Efi (ξ) = Egi (ξ) and
E0,f (ξ) = E0,g(ξ) since f and g coincide until ξ. Thus, we will not distinguish between those
sets for f and g in the following proof and drop the corresponding index.
(31): Let e ∈ E0(ξ) be an edge with zero travel time at ξ and i ∈ I any commodity. Using the

fact that g is a Vickrey flow until ξ + ε (in particular the queue on edge e operates fair and
at capacity) we get

x−e,i = g−e,i(ξ)
(15)
= g−e (ξ) ·

g+
e,i(ξ)

g+
e (ξ)

(6)
= min { g+

e (ξ), νe } ·
g+
e,i(ξ)

g+
e (ξ)
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=
g+
e,i(ξ)νe

max { g+
e (ξ), νe }

=
x+
e,i · νe

max {x+
e , νe }

.

if g+
e (ξ) > 0 and x−e,i = 0 =

x+
e,i·νe

max{ x+
e ,νe }

directly from (15) if x+
e = g+

e (ξ) = 0.

(32): Let e ∈ E \ E0
ξ be an edge with non-zero travel time at ξ and i ∈ I any commodity. Then

the edge outflow close to time ξ is not affected by changes of the edge inflow at or after
time ξ (cf. Corollary 3.43). Thus, we have

x−e,i = g−e,i(ξ) = f−e,i(ξ).

(33),(34): Since g is a Vickrey flow until ξ+ε, (33) and (34) follow directly from Proposition 3.52.
(35): This follows directly from the fact that g is an IDE until ξ + ε.
(36): Since g is a Vickrey flow until ξ+ε > ξ with constant edge inflow rates x+

e during [ξ, ξ+ε),
Proposition 3.22 guarantees the existence of some β ∈ (0, ε] such that all queue lengths
functions and, consequently, all node label functions are linear on [ξ, ξ + β). For any
v, Ti-path p we can then compute the current path travel times during this interval by

Cgp (θ) =
∑
e∈p

(
τe +

Qge(θ)
νe

)
Prop. 3.22

=
∑
e∈p

(
τe + Qe(ξ)

νe
+ (θ − ξ)ψe(g+

e (ξ))
)

= Cp(ξ) + (θ − ξ)
∑
e∈p

ψe(x
+
e ).

Furthermore, we can even choose β small enough such that there is a v, Ti-path p ∈ Pv,i(ξ)
which is active for the whole interval [ξ, ξ + β). Then we have for any path p′ ∈ Pv,i(ξ):

Cp′(ξ) + (θ − ξ)
∑
e∈p′

ψe(x
+
e ) = Cgp′(θ) ≥ C

g
p (θ) = Cp(ξ) + (θ − ξ)

∑
e∈p

ψe(x
+
e )

and, therefore, ∑
e∈p′

ψe(x
+
e ) ≥

∑
e∈p

ψe(x
+
e )

Thus, we have

av,i = ∂+L
g
v,i(ξ) = ∂+C

g
p (ξ) =

∑
e∈p

ψe(x
+
e ) ≤

∑
e∈p′

ψe(x
+
e )

for all p′ ∈ Pv,i(ξ).
(37): This follows directly from Proposition 2.67a) and our convention that the derivative of a

function which is constantly infinite is 0.
(39): Let e = vw be any edge with x+

e,i > 0 for some commodity i. Since the IDE-property holds
for g until ξ + ε, we must have

Lgv,i(θ) = Cge (θ) + Lgw,i(θ)

for all θ ∈ [ξ, ξ + ε) and, therefore,

av,i = ∂+L
g
v,i(ξ) = ∂+C

g
e (ξ) + ∂+L

g
w,i(ξ) =

∂+Q
g
e(ξ)

νe
+ ∂+L

g
w,i(ξ)

(8)
= ψe(x

+
e ) + aw,i

Thus, (x+, x−, a) is indeed an IDE-thin flow for f at ξ.

With this proposition we have now reduced the existence of IDE-extensions for partial IDE with
right-constant flow rates to the existence of IDE-thin flows. We will show existence of such IDE-thin
flows in Subsections 4.3.2 and 4.3.3. Before that, however, we will introduce and additional framework
which will allow us to break down existence (and, later, computation) of IDE-thin flows further down
into smaller subproblems.
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4.3.1. IDE-Thin Flow Augmentation

The goal of this section is to show how under certain assumption we can split a given network into
an “inner” and an “outer” part such that we can augment any IDE-thin flow for the inner part to an
IDE-thin flow for the whole network. More precisely, let N be a network and (f, ξ) be a partial IDE
in N with right-constant flow rates. We then consider a partition V = V̌ ∪̇ V̂ of the node set into
inner nodes V̌ and outer nodes V̂ satisfying the following two assumptions

(i) ∀i ∈ I : δ+(V̌ ) ∩ Ei(ξ) = ∅ and

(ii) ∀i ∈ I : δ−(V̌ ) ∩ E0(ξ) ∩ Ei(ξ) = ∅.

Note that it is explicitly allowed here that one of the two sets may be empty.

Example 4.23. Consider an urban area with a central city (the inner part) and surrounding suburbs
(the outer part). If we want to model the morning rush hour traffic it might be a reasonable assumption
that there are only three types of travellers: Travellers with origin and destination either both inside
or both outside the city and travellers with origin outside and destination inside the city. In this
situation it might very well be the case that there are no relevant (=active) routes which leave the
city at some point and, thus, assumption (i) would be satisfied.

Another example could be the holiday traffic at the start of the summer holidays in Bavaria where
(at least according to folklore) everyone is travelling southwards and, thus, every split of the road
network between a northern and a southern part would satisfy assumption (i).
From a more mathematical point of view networks which always allow partitions satisfying as-

sumption (i) are single-sink networks and acyclic networks with strictly positive free flow travel
times.

We now define the restricted inner network

Ň := (G[V̌ ], τ |E[V̌ ] , ν|E[V̌ ] , I, ǔ, (Ti ∩ V̌ ))

where ǔv,i := uv,i +
∑
e∈(δ+(V̂ )∩δ−(v))\E0(ξ) f

−
e,i defines the network inflow rates of the inner network.

Assumption (ii) ensures that in any IDE extension of (f, ξ) the outflow rates of all edges in δ−(V̌ )
remain unchanged for some time after ξ. Thus, the adjusted network inflow rates ǔv,i for the inner
network ensure that any IDE-thin flow for the inner network already satisfies the flow conservation
constraints at nodes when considered as part of an IDE-thin flow for the whole network. Assumption (i)
guarantees that at time ξ all active paths starting at an inner node remain within the inner network.
This, in particular, allows us to speak of IDE-thin flows for (f |G[V̌ ] , ξ) in the restricted network Ň .
Additionally, it also allows us to describe the v, Ti-paths for outer nodes v by introducing for any node
v ∈ V̂ and commodity i ∈ I the following two sets:

P+
v,i(ξ) :=

{
(p, w)

∣∣∣ p a v, w-path, w ∈ V̌ \ V †i , p ⊆ Ê ∩ Ei(ξ)
}

denotes the set of prefixes of active v, Ti-paths ending with an active edge connecting the outer and
the inner part of the network while

ˆPv,i(ξ) :=
{
p ∈ Pv,i(ξ)

∣∣∣ all nodes on p are in V̂
}

denotes the set of active v, Ti-paths completely within the outer part of the network. The following
lemma now explains how these two sets are related to the set v, Ti-path (in the full network):

Lemma 4.24. Let (f, ξ) be a partial flow, V = V̌ ∪̇ V̂ a partition satisfying assumptions (i) and (ii),
(x̌+, x̌−, ǎ) an IDE-thin flow for (f |G[V̌ ] , ξ) in Ň , x̂+ ∈ RÊ≥0 some vector and x+ := x̌− ⊕ x̂+ ∈ RE≥0.
Then the following holds for any commodity i ∈ I:

a) For any p ∈ Pv,i(ξ) \ ˆPv,i(ξ) there exists a pair (p′, w) ∈ P+
v,i(ξ) such that∑

e∈p
ψe(x

+
e ) ≥ ǎw,i +

∑
e∈p′

ψe(x̂
+
e ).
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b) For any pair (p′, w) ∈ P+
v,i(ξ) there exists a path p ∈ Pv,i(ξ) with∑

e∈p
ψe(x

+
e ) = ǎw,i +

∑
e∈p′

ψe(x̂
+
e ).

Proof. a): Take any path p ∈ Pv,i(ξ) \ ˆPv,i(ξ). Due to assumption (i) we can subdivide this path as
p = p′, p′′ where p′ only uses edges in E[V̂ ] and p′′ only uses edges in E[V̌ ]. Furthermore, let
w ∈ V̌ be the node where the two subpaths connect. Then, we have p′′ ∈ Pw,i(ξ) and, thus,
w /∈ V †i by Proposition 2.67b). Furthermore, Proposition 2.67l) ensures p′ ⊆ Ei(ξ) and, therefore,
(p′, w) ∈ P+

v,i as well as∑
e∈p

ψe(x
+
e ) =

∑
e∈p′′

ψe(x̌
+
e ) +

∑
e∈p′

ψe(x̂
+
e )

(36)
≥ ǎw,i +

∑
e∈p′

ψe(x̂
+
e ).

b): Take any pair (p′, w) ∈ P+
v,i(ξ). Then, due to (36), there must be a path p′′ ∈ Pw,i(ξ) with

ǎw,i =
∑
e∈p′′ ψe(x̌

+
e ). Since assumption (i) guarantees that p′′ does not leave the inner network,

p := p′, p′′ is still a simple path using only active edges and, thus, we have p ∈ Pv,i(ξ) by
Proposition 2.67l). Additionally, we have∑

e∈p
ψe(x

+
e ) =

∑
e∈p′′

ψe(x̌
+
e ) +

∑
e∈p′

ψe(x̂
+
e ) = ǎw,i +

∑
e∈p′

ψe(x̂
+
e ).

We can now formally describe the conditions a vector (x̂+, x̂−, â) ∈ RÊ×I≥0 × RÊ×I≥0 × RV̂×I must
satisfy such that we can use it to augment a given IDE-thin flow for the inner part of the network.
Here, we denote by Ê := E \ E[V̌ ] the set of edges which are not part of the inner network.

Definition 4.25. Let (f, ξ) be a partial IDE with right-constant flow rates in some network N with
right-constant network inflow rates. Furthermore, let V = V̌ ∪̇ V̂ be a partition of the node set of N
and (x̌+, x̌−, ǎ) ∈ RE[V̌ ]×I

≥0 × RE[V̌ ]×I
≥0 × RV̌×I an IDE-thin flow for (f |G[V̌ ] , ξ) in Ň .

Then a vector (x̂+, x̂−, â) ∈ RÊ×I≥0 ×R
Ê×I
≥0 ×RV̂×I is an IDE-thin flow augmentation of (x̌+, x̌−, ǎ)

if it satisfies the following equations:

x̂−e,i =
x̂+
e,i · νe

max { x̂+
e , νe }

for all e ∈ E0(ξ) ∩ Ê (3̂1)

x̂−e,i = f−e,i(ξ) for all e ∈ Ê \ E0(ξ) (3̂2)∑
e∈δ+(v)

x̂+
e,i = uv,i(ξ) +

∑
e∈δ−(v)

x̂−e,i for all i ∈ I, v ∈ V̂ \ Ti (3̂3)

∑
e∈δ+(t)

x̂+
e,i ≤ ut,i(ξ) +

∑
e∈δ−(t)

x̂−e,i for all i ∈ I, t ∈ Ti ∩ V̂ (3̂4)

x̂+
e,i = 0 for all e ∈ Ê \ Ei(ξ) (3̂5)

âv,i = min

{ ǎw,i +
∑
e∈p ψe(x̂

+
e )
∣∣∣ (p, w) ∈ P+

v,i(ξ)
}

∪
{∑

e∈p ψe(x̂
+
e )
∣∣∣ p ∈ ˆPv,i(ξ)

}  for all i ∈ I, v ∈ V̂ \ V †i (3̂6)

âv,i = 0 for all i ∈ I, v ∈ V̂ ∩ V †i (3̂7)

âv,i = ψe(x̂
+
e ) + âw,i if x̂+

e,i > 0 for all i ∈ I, v ∈ V̂ and (3̂9a)

e = vw ∈ δ+(v) \ δ−(V̌ )

âv,i = ψe(x̂
+
e ) + ǎw,i if x̂+

e,i > 0 for all i ∈ I, v ∈ V̂ and (3̂9b)

e = vw ∈ δ+(v) ∩ δ−(V̌ ).
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Intuitively, the defining constraints for an IDE-thin flow augmentation are just the general IDE-thin
flow constraints specialised to nodes in the outer part of the network (under the assumption that
(x̌+, x̌−, ǎ) already is an IDE-thin flow for the inner part). Thus, it should not be surprising that
combining an IDE-thin flow for the inner network with an IDE-thin flow augmentation gives us an
IDE-thin flow for the whole network. The following lemma shows that this is indeed the case:

Lemma 4.26. Let (f, ξ) be a partial IDE with right-constant flow rates in some network N with
right-constant network inflow rates and V = V̌ ∪̇ V̂ a partition satisfying assumptions (i) and (ii). Let
(x̌+, x̌−, ǎ) an IDE-thin flow for (f |G[V̌ ] , ξ) in Ň and (x̂+, x̂−, â) an IDE-thin flow augmentation for
(x̌+, x̌−, ǎ).

Then (x+, x−, a) := (x̌+, x̌−, ǎ)⊕ (x̂+, x̂−, â) is an IDE-thin flow for (f, ξ) in N .

Proof. We first note that, since there are no active edges leaving G[V̌ ] at time ξ (assumption (i)),
all active paths from nodes in V̌ also stay inside G[V̌ ]. Thus, the sets of active paths from nodes in
the inner network and, consequently, the sets of active edges within the inner network are the same
regardless of whether we compute them with respect to (f, ξ) in the full network or with respect to
(f |G[V̌ ] , ξ) in the inner network. Therefore, we do not need to distinguish between these two types of
sets in the following proof.

(31),(32) and (35): For edges in E[V̌ ] these are satisfied because (x̌+, x̌−, ǎ) is an IDE-thin flow in
the restricted network. For all other edges they are satisfied because (x̂+, x̂−, â) satisfies the
equivalent constraints (3̂1), (3̂2) and (3̂5).

(33): For nodes v ∈ V̂ \ Ti this constraint is the same as (3̂3) for (x̂+, x̂−, â). For nodes v ∈ V̌ \ Ti we
have∑
e∈δ+(v)

x+
e,i =

∑
e∈δ+(v)∩E[V̌ ]

x̌+
e,i +

∑
e∈δ+(v)∩δ+(V̌ )

x̂+
e,i

(i),(3̂5)
=

∑
e∈δ−

G[V̌ ]
(v)

x̌+
e,i + 0

(33)
= ǔv,i(ξ) +

∑
e∈δ−

G[V̌ ]
(v)

x̌−e,i = uv,i(ξ) +
∑

e∈(δ+(V̂ )∩δ−(v))\E0(ξ)

f−e,i(ξ) +
∑

e∈δ−(v)∩E[V̌ ]

x̌−e,i

(3̂2)
= uv,i(ξ) +

∑
e∈(δ+(V̂ )∩δ−(v))\E0(ξ)

x̂−e,i +
∑

e∈δ−(v)∩E[V̌ ]

x̌−e,i

(ii),(3̂5)
= uv,i(ξ) +

∑
e∈(δ+(V̂ )∩δ−(v))\E0(ξ)

x̂−e,i +
∑

e∈δ+(V̂ )∩δ−(v)∩E0(ξ)

x̂−e,i +
∑

e∈δ−(v)∩E[V̌ ]

x̌−e,i

= uv,i(ξ) +
∑

e∈δ−(v)

x−e,i.

(34): This constraint holds for the same reasons as (33) (just using (34) instead of (33) for the inner
IDE-thin flow).

(36): For nodes v ∈ V̌ this is the same as (36) for (x̌+, x̌−, ǎ) in the restricted network since, as
mentioned at the beginning of the proof, assumption (i) ensures that the set of active v, Ti-path
is the same with respect to the inner network and to the whole network. For nodes v ∈ V̂ this
follows from (3̂6) using Lemma 4.24a) and b):

av,i = âv,i
(3̂6)
= min

({
ǎw,i +

∑
e∈p

ψe(x̂
+
e )|(p, w) ∈ P+

v,i(ξ)

}
∪
{∑
e∈p

ψe(x̂
+
e )|p ∈ ˆPv,i(ξ)

})
Lem. 4.24a),b)

= min

({∑
e∈p

ψe(x
+
e )|p ∈ Pv,i(ξ)

}
∪
{∑
e∈p

ψe(x
+
e )|p ∈ ˆPv,i(ξ)

})

= min

{∑
e∈p

ψe(x
+
e )

∣∣∣∣∣ p ∈ Pv,i(ξ)
}
.
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(37): This is just the same as (37) for (x̌+, x̌−, ǎ) and (3̂7) for (x̂+, x̂−, â), respectively.

(39): This is the same as (39) for (x̌+, x̌−, ǎ) and (3̂9a)/(3̂9b) for (x̂+, x̂−, â), respectively.

Remark 4.27. It is not hard to see that the reverse direction of Lemma 4.26 holds as well, i.e. in
the situation of this lemma any IDE-thin flow for (f, ξ) in N can be split into an IDE-thin flow for
(f |G[V̌ ] , ξ) in Ň and an IDE-thin flow augmentation for it. However, we will not need this direction
and, therefore, omit a formal proof for it.

Before we can now show the existence of IDE-thin flow augmentations (and, therefore, of IDE-thin
flows), we need one more technical lemma:

Lemma 4.28. Let (f, ξ) be a partial IDE with right-constant flow rates in some network N with right-
constant network inflow rates. Moreover, let V = V̌ ∪̇ V̂ a partition satisfying assumptions (i) and (ii),
(x̌+, x̌−, ǎ) an IDE-thin flow for (f |G[V̌ ] , ξ) in Ň and i ∈ I some fixed commodity. Now let, additionally,

(x̂+, â) ∈ RÊ×I≥0 × RV̂×I be any vector satisfying (3̂6) and (3̂7) and define (x+, a) := (x̌+, ǎ)⊕ (x̂+, â).
Then for any node v ∈ V̂ \ (Ti ∪ V †i ) there exists an edge e = vw ∈ δ+(v) ∩ Ei(ξ) with av,i =

ψe(x
+
e ) + aw,i.

Proof. We define a new graph

Ĝ := (V \ V †i ∪̇ { t } , Ei(ξ) \ E[V̌ ] ∪̇ { vt | v ∈ V̌ \ V †i })

together with edge costs

γe :=

{
ψe(x

+
e ), for e ∈ Ei(ξ) \ E[V̌ ]

ǎv,i, for e = vt
.

Claim 6. (av,i)v∈V \V †i
⊕(0)v∈{ t } is a vector of node labels for Ĝ with respect to (γe) and T := Ti∪{ t }.

Furthermore, Ĝ does not have any dead-end nodes and every cycle in Ĝ has non-negative total costs.

Proof. We show that (av,i)v∈V \V †i
⊕ (0)v∈{ t } is a vector of node labels by a case distinction on the

node v:

1. Case: v = t: Since t is a terminal node with no outgoing edges in Ĝ the empty path is the only
t, T -path and, thus, the node label at t must be 0.

2. Case: v ∈ V̌ \ V †i : Here Assumption (i) ensures that vt is the only edge leaving v in Ĝ and,
hence, also its unique v, T -path. Consequently, the node label of v must be γvt = ǎv,i = av,i.

3. Case: v ∈ V̂ \ V †i : Let p be any v, T -path in Ĝ. If all nodes on p are from V̂ , then we have
p ∈ ˆPv,i(ξ) and its cost with respect to (γe) is

∑
e∈p ψe(x

+
e ). Otherwise, p either ends at some

node w ∈ V̌ ∩Ti or with an edge wt for some node w ∈ V̌ . In both cases we have (p′, w) ∈ P+
v,i(ξ)

with either p = p′ or p = p′, wt and the cost of p with respect to (γe) is ǎw,i +
∑
e∈p′ ψe(x

+
e ).

For the case of w ∈ V̌ ∩ Ti we use here that (x̌+, x̌−, ǎ) is an IDE-thin flow for (f |G[V̌ ] , ξ) in
Ň and, therefore, we have ǎw,i = 0 by Proposition 2.67j) (cf. Proposition 4.20). In conclusion,
defining âv,i by (3̂6) is equivalent to the definition of the node label in Ĝ with respect to (γe).

To see that there are no dead end nodes, we first observe that any node in V̌ ∪ { t } has a path
towards the terminal node t. For any node v ∈ V̂ \ V †i there exists at least one path p ∈ Pv,i(ξ)
according to Proposition 2.67b). This path then either uses only edges in Ê or it uses at least on edge
in E[V̌ ]. In the former case p is a v, T -path in Ĝ. In the latter case let p′ be a prefix of p ending in
some node w ∈ V̌ . Then p′, wt is a v, T -path path in Ĝ.

Finally, let c be a cycle in Ĝ. Since there are no edges leaving t in Ĝ, such a cycle must lie completely
in Ei(ξ). Thus, all edges on c have a current travel time of zero by Proposition 2.67h) (applied, again,
to G with respect to (Ce(ξ))). This, in turn, implies Qe(ξ) = 0 and, therefore, ψe(x+

e ) ≥ 0 for all
e ∈ c. Thus, we have

∑
e∈c γe =

∑
e∈c ψe(x

+
e ) ≥ 0. �
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Now, take any node v ∈ V̂ \ (Ti ∪ V †i ). Then, applying Proposition 2.67e) and g) to Ĝ with respect
to (γe) (which we are allowed to by Claim 6) provides us with the required edge e = vw ∈ δ+(v)∩Ei(ξ)
satisfying av,i = ψe(x

+
e ) + aw,i.

4.3.2. IDE-Thin Flows via a Fixed Point Theorem

We will now show the existence of IDE-thin flow (augmentations) in essentially the same way that we
showed existence of IDE-extensions for general flow rates in Section 4.2: That is, we define a set K
of candidates using only the “easy” constraints from the definition of IDE-thin flow augmentations.
Next, we define a mapping Γ which gives us for any such candidate (x+, x−) ∈ K the set of candidates
(y+, y−) ∈ K such that (x+, y−) satisfies the IDE-thin flow constraints missing in the definition of K.
Finally, we apply Kakutani’s Fixed Point Theorem to deduce existence of a fixed point of Γ which
is then our IDE-thin flow (augmentation). Note that for finite dimensional Banach spaces (which is
what we are considering here) weak and strong topology coincide (cf. [AB06, Theorem 6.26]) which is
why we can just use the standard topology on Rn here.

Lemma 4.29. Let (f, ξ) be a partial IDE with right-constant flow rates in a feasible network with
right-constant network inflow rates. Moreover, assume that f is a Vickrey edge flow for all times on
all edges, let V = V̌ ∪̇ V̂ be a partition satisfying assumptions (i) and (ii) and (x̌+, x̌−, ǎ) an IDE-thin
flow for (f |G[V̌ ] , ξ) in Ň .
Then there exists an IDE-thin flow augmentation for (x̌+, x̌−, ǎ).

Proof. We want to show the existence of a vector (x̂+, x̂−, â) ∈ RÊ×I × RÊ×I × RV̂×I satisfying
constraints (3̂1) to (3̂9b), i.e. an IDE-thin flow augmentation, by using Kakutani’s fixed point theorem
(Theorem 2.56). To do so, we first define the set

K :=

{
(x̂+, x̂−) ∈ RI×Ê≥0 × RI×Ê≥0

∣∣∣∣∣ (x̂+, x̂−) satisfies (3̂2), (3̂3), (3̂4), (3̂5), x̂−e,i ≤ νe f.a. e ∈ Ê, i ∈ I
and x̂+

e,i = x̂+
e,i = 0 for all i ∈ I, e = vw ∈ Ê with w ∈ V †i

}
.

Since all constraints defining this set are linear, it is clearly convex and closed. Furthermore, it is
bounded as all x̂−e,i are bounded by νe and then all x̂+

e,i are bounded by (3̂3) and (3̂4). Finally, to
show that K is non-empty we can construct an element of K as follows: We set x̂−e,i := f−e,i(ξ) for all
e ∈ Ê \ E0(ξ) and x̂−e,i := 0 for all e ∈ Ê ∩ E0(ξ). Since f respects capacity, we then have x̂−e,i ≤ νe.
Moreover, we have x̂+

e,i = f−e,i(ξ) = 0 for all e = vw ∈ E \ E0(ξ) with w ∈ V †i by Proposition 3.66.
Thus, (3̂2) as well as the two additional constraints of K are already satisfied.

For defining x̂+
e,i in such a way that (3̂3), (3̂4) and (3̂5) hold as well, we look at all edges leaving a

common node v ∈ V̂ at once and distinguish three cases:

1. If v ∈ Ti, we set x̂+
e,i := 0 for all e ∈ δ+(v).

2. If v ∈ V †i , we have uv,i(ξ) = 0 since the network is feasible and f−e,i(ξ) = 0 for all e ∈ δ−(v)\E0(ξ)

by Proposition 3.66. Thus, we can set x̂+
e,i := 0 for all e ∈ δ−(v).

3. If v /∈ Ti ∪ V †i , then we must have δ+(v) 6= ∅ and, therefore, Proposition 2.67e) guarantees the
existence of least one active edge leaving v. We pick one such edge e′ = vw ∈ δ+(v)∩Ei(ξ) ⊆ Ê
and define x̂+

e′,i := uv,i(ξ) +
∑
e∈δ−(v)\E0(ξ) f

−
e,i(ξ) for this edge and x̂+

e,i := 0 for all other edges
e ∈ δ+(v)\{ e′ }. Since v /∈ V †i and e′ is active, we have w /∈ V †i as well due to Proposition 2.67a).

The vector (x̂+, x̂−) defined this way is now clearly an element of K i.e. a witness for K 6= ∅.
Next, we define a mapping Γ : K → 2K by setting

Γ(x̂+, x̂−) :=

{
(ŷ+, ŷ−) ∈ K

∣∣∣∣∣ ŷ−e,i =
x̂+
e,iνe

max{ x̂+
e ,νe }

for all e ∈ E0(ξ) ∩ Ê and

ŷ+
e,i = 0 for all e = vw ∈ Ê with av,i < ψe(x̂

+
e ) + aw,i

}
,
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where (av,i) is the node labels corresponding to (x̂+, x̂−) according to eqs. (3̂6) and (3̂7) for nodes
v ∈ V̂ and the node labels ǎv,i of (x̌+, x̌−, ǎ) for nodes v ∈ V̌ . Since the constraints on (ŷ+, ŷ−) are
linear (for fixed (x̂+, x̂−)), these sets are clearly convex. They are also non-empty, as for any given

(x̂+, x̂−) we can define an elements (ŷ+, ŷ−) ∈ Γ(x̂+, x̂−) as follows: First, we set ŷ−e,i :=
x̂+
e,iνe

max{ x̂+
e ,νe }

for all e ∈ E0(ξ) ∩ Ê and ŷ−e,i := f−e,i(ξ) for all e ∈ Ê \ E0(ξ). Observe, that, in both cases, these
ŷ−e,i then satisfy ŷ−e,i ≤ νe (in the former case by construction and in the latter case since f respects
capacity) and we have ŷ−e,i = 0 whenever e ∈ δ−(w) for some w ∈ V †i (in the first case because then
we also have x̂+

e,i = 0, in the second case due to Proposition 3.66). For defining ŷ+
e,i we again look at

all edges leaving some node v ∈ V̂ at once and distinguish four cases:

1. If v ∈ Ti or uv,i(ξ) +
∑
e∈δ−(v) ŷ

−
e,i = 0, we set ŷ+

e,i := 0 for all e ∈ δ+(v).

2. If v /∈ Ti and uv,i(ξ) > 0, we have v /∈ V †i since the given network is feasible. Lemma 4.28 then
ensures that that there exists an active edge e′ = vw ∈ δ+(v)∩Ei(ξ) with av,i = ψe′(x̂

+
e′) + aw,i.

Thus, we can set ŷ+
e′,i := uv,i(ξ) +

∑
e∈δ−(v) ŷ

−
e,i and ŷ

+
e,i := 0 for all other edges e ∈ δ+(v) \ { e′ }.

Since v /∈ V †i and e′ is active, we have w /∈ V †i as well due to Proposition 2.67a).

3. If v /∈ Ti and ŷ−e,i > 0 for some edge e ∈ E0(ξ) ∩ δ−(v), we must have x̂+
e,i > 0 as well and,

therefore, v /∈ V †i since (x̂+, x̂−) ∈ K. Thus, we can proceed to define ŷ+
e,i for the edges e ∈ δ+(v)

in the same way as in the previous case.

4. If v /∈ Ti and f−e,i(ξ) > 0 for some edge e ∈ δ−(v) \E0(ξ), we have v /∈ V †i by Proposition 3.66.
Hence, we can again proceed as in the second case.

Clearly, any vector (ŷ+, ŷ−) defined this way is an element of Γ(x̂+, x̂−) which is, therefore, non-empty.
Finally, we need to show that Γ has a closed graph. Thus, let (x̂+,n, x̂−,n, ŷ+,n, ŷ−,n) be a sequence

in RÊ×I≥0 × RÊ×I≥0 × RÊ×I≥0 × RÊ×I≥0 with (x̂+, x̂−) ∈ K and (ŷ+,n, ŷ−,n) ∈ Γ(x̂+,n, x̂−,n) for all n ∈ N0

converging to some vector (x̂+, x̂−, ŷ+, ŷ−). As all (x̂+,n, x̂−,n) and (ŷ+,n, ŷ−,n) are elements of the
compact set K, so are their limit points (x̂+, x̂−) and (ŷ+, ŷ−). Let ân ∈ RV̂×I be the sequence
of node labels associated to (x̂+,n, x̂−,n) via eqs. (3̂6) and (3̂7). Since the mapping (x̂+, x̂−) 7→ â
is continuous by exactly the same argument as in the proof of Proposition 4.21, we know that
a := limn a

n is the vector of node labels associated with (x̂+, x̂−). Now, assume for contradiction that
(ŷ+, ŷ−) /∈ Γ(x̂+, x̂−). There are then two possible reasons for this – both leading to a contradiction:

• If we have ŷ−e,i 6=
x̂+
e,iνe

max{ x̂+
e ,νe }

for some e ∈ E0(ξ), then due to the continuity of both sides, there

must be some n ∈ N0 such that ŷ−,ne,i 6=
x̂+,n
e,i νe

max{ x̂+,n
e ,νe }

, which is a contradiction to (ŷ+,n, ŷ−,n) ∈
Γ(x̂+,n, x̂−,n) – note here, that the set E0(ξ) is independent of n.

• If we have ŷ+
e,i > 0 for some edge e = vw with av,i < ψe(x̂

+
e ) + aw,i, then, again because of

continuity, we must also have ŷn,+e,i > 0 and anv,i < ψe(x̂
+,n
e ) + anw,i for some n ∈ N0 which is a

contradiction to (ŷ+,n, ŷ−,n) ∈ Γ(x̂+,n, x̂−,n).

Thus, all conditions of Theorem 2.56 are satisfied and we get the existence of a fixed point (x̂+, x̂−) ∈ K
with (x̂+, x̂−) ∈ Γ(x̂+, x̂−). The vector (x̂+, x̂−, â) with â defined by eqs. (3̂6) and (3̂7) is then an
IDE-thin flow augmentation for (x̌+, x̌−, ǎ).

Note, that we explicitly allow V̌ = ∅ in the above lemma. In this case Ň is the empty network and,
thus, the empty vector is an IDE-thin flow for this restricted network. The above lemma then implies
that there always exists an IDE-thin flow for the whole network – i.e. the following existence result for
IDE-thin flows is an immediate corollary of the above lemma:

Corollary 4.30. For any partial IDE (f, ξ) with right-constant flow rates in a feasible network with
right-constant network inflow rates there exists an IDE-thin flow (x+, x−, a).
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Proof. Choose V̌ := ∅ and V̂ := V as a partition in Lemma 4.29. This clearly satisfies both assumptions
(i) and (ii). Furthermore, the empty vector is then a trivial IDE-thin flow for the inner network. Thus,
Lemma 4.29 guarantees the existence of an IDE-thin flow augmentation which, by Lemma 4.26, gives
us an IDE-thin flow for (f, ξ).

This, in turn, now implies the existence of IDE in networks with right-constant network inflow rates:

Theorem 4.31. Let N be a feasible network with right-constant network inflow rates. Then there
exists an IDE-flow with right-constant flow rates.

Proof. This follows directly from the above corollary and Theorem 4.6: We define F as the set of
partial IDE in N with right-constant flow rates. This set is non-empty as (0, 0) ∈ F. By Corollary 4.30
and Proposition 4.22 we can extend any partial IDE (f, ξ) ∈ F for some additional non-zero time
interval. Finally, for any chain of right-constant partial IDE their limit (in the sense of Definition 4.8)
is again a partial IDE with right-constant flow rates by Proposition 4.10/Corollary 4.11.

4.3.3. IDE-Thin Flows via Convex Optimization

Looking at the previous subsection one may wonder why we even introduced the concept of IDE-thin
flow augmentations as in the proof of Theorem 4.31 we only used Lemma 4.26 to deduce the existence
of an IDE-thin flow for the whole network at once. Thus, for this result it would have been enough to
directly state and prove Lemma 4.26 as an existence result for IDE-thin flows as it was done with
essentially the same proof in [GHS20, Lemma 5.3].
The usefulness of IDE-thin flow augmentations will become clear in this subsection where we will

use it to derive existence of IDE-thin flows without needing to refer to some fixed point theorem
(though, on the flip side, only for a more restricted class of networks). More precisely, we will consider
partitions where the outer part of the network consists of only a single node. This then reduces the
set of constraints for IDE-thin flow augmentations to a much simpler set of equations for which we
can show the existence of a solution more directly:

Lemma 4.32. Let (f, ξ) be a partial IDE with right-constant flow rates in a feasible network with
right-constant network inflow rates. Moreover, assume that f is a Vickrey edge flow for all times on
all edges, let V = V̌ ∪̇ V̂ be a partition with V̂ = { v } and satisfying assumptions (i) and (ii) and
(x̌+, x̌−, ǎ) an IDE-thin flow for (f |G[V̌ ] , ξ) in Ň .

Then any solution (x+
e,i)e,i ∈ Rδ+(v)×I to

min
∑

e∈δ+(v)

∫ ∑
i∈I x

+
e,i

0

ψe(z)dz +
∑

e=vw∈δ+(v),i∈I

x+
e,i · ǎw,i

s.t.
∑

e∈δ+(v)

x+
e,i = uv,i(ξ) +

∑
e∈δ−(v)\E0(ξ)

f−e,i(ξ) for all i ∈ I with v /∈ Ti

x+
e,i = 0 for all i ∈ I with v ∈ Ti and e ∈ δ+(v)

x+
e,i ≥ 0 for all i ∈ I, e ∈ δ+(v) ∩ Ei(ξ)
x+
e,i = 0 for all i ∈ I, e ∈ δ+(v) \ Ei(ξ)

(COPT)

together with x+
e,i := 0 for all e ∈ δ−(v), x−e,i defined by (3̂1) and (3̂2) and av,i defined by (3̂6) and

(3̂7) is an IDE-thin flow augmentation for (x̌+, x̌−, ǎ).
Furthermore, such a solution always exists.

Proof. Let (x+
e,�, x

−
e,�) be an optimal solution to (COPT). Then the feasibility of (x+

e,�, x
−
e,�) together

with the way all the remaining variables are defined already ensures that (x+, x−, a) satisfies (3̂1) to
(3̂7). Furthermore, (3̂9a) is an empty condition here since V̂ contains only a single node.

Thus, we only have to show that (3̂9b) is satisfied as well. Since the objective function of (COPT)
is differentiable and (x+

e,�, x
−
e,�) an optimal solution, there must then exist vectors (αi)i ∈ RI and
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(βe,i)e,i ∈ Rδ+(v)×I satisfying the necessary KKT-condition (Proposition 2.69):

ψe(x
+
e ) + ǎw,i + αi − βe,i = 0 for all i ∈ I, e = vw ∈ δ+(v) (40)

βe,i ≥ 0 for all i ∈ I, e ∈ δ+(v) ∩ Ei(ξ) (41)

βe,i · x+
e,i = 0 for all i ∈ I, e ∈ δ+(v) ∩ Ei(ξ) (42)

Hence, for any commodity i with v /∈ V †i ∪ Ti and edges e = vw ∈ δ+(v) ∩ Ei(ξ) we have

ψe(x
+
e ) + ǎw,i

(40)
= −αi + βe,i

(41)
≥ −αi,

while for any edge e ∈ δ+(v) ∩ Ei(ξ) with x+
e,i > 0 we get

ψe(x
+
e ) + ǎw,i

(40),(42)
= −αi.

Together with (3̂6) this implies av,i = −αi whenever there is at least one edge e ∈ δ+(v) with x+
e,i > 0,

which, in turn, guarantees that (3̂9b) holds for such an edge.
Now, in order to show that (COPT) always has an optimal solution, we observe that the objective

function is continuous while the set of feasible solutions is compact. Thus, by the extreme value
theorem (Proposition 2.68) it suffices to show that the set of feasible solutions is non-empty. This is,
indeed, the case as we can only have uv,i(ξ) +

∑
e∈δ−(v)\E0(ξ) f

−
e,i(ξ) > 0 for commodities with v /∈ V †i

(since the network is feasible and because of Proposition 3.66). Such a node then always has at least
one outgoing edge if it is not a sink node. Thus, we we are always able to choose x+

e,i ≥ 0 such that
all feasibility conditions of (COPT) are satisfied.

Remark 4.33. The problem considered in Lemma 4.32 can also be interpreted as a Wardrop equilibrium
problem for static flows in a rather simple network (see Figure 12). The objective function in (COPT)
is then exactly the potential function typically used to show existence of Wardrop equilibria (cf. e.g.
[NRTV07, Section 18.3.1]). Note that the edge costs of this static flow network might be negative.
However, since all source,sink-paths consist of exactly two edges, we can easily transform this network
into an equivalent network with non-negative costs by adding some positive constant to all edge costs.
In the single-commodity case the whole network can also be further simplified into a parallel link
network.

In situations where we can construct the network by iteratively adding a single node satisfying the
assumptions of Lemma 4.32 this now implies existence of an IDE-thin flows comprised of solutions to
(COPT).

Lemma 4.34. Let (f, ξ) be a partial IDE with right-constant flow rates in a feasible network with
right-constant network inflow rates and assume that f is a Vickrey edge flow on all edges for all times.
If there are no active edges with current travel time zero and the active subgraph of all commodities
is acyclic, i.e. we have E0(ξ) ∩

⋃
i∈I Ei(ξ) = ∅ and (V,

⋃
i∈I Ei(ξ)) is acyclic, then there exists an

IDE-thin flow for (f, ξ).

Proof. Since (V,
⋃
i∈I Ei(ξ)) is acyclic, it admits a topological ordering � on V such that for every

commodity i ∈ I and edge e = vw ∈ Ei we have v ≺ w. Now, enumerate the nodes in V such that we
have v1 � v2 � · · · � vn. Then for any k ∈ [n] the sets V̂ := { vk } and V̌ := { v1, . . . , vk−1 } define
a partition of the restricted network N|G[{ v1,...,vk }] satisfying assumptions (i) and (ii). Thus, by
applying Lemma 4.32 n times we can construct an IDE-thin flow for the whole network.

We can now use this extension-lemma to show existence for the two classes of networks already
mentioned as potential use cases for IDE-thin flow augmentations in Example 4.23: Acyclic networks
and single-commodity networks:

Theorem 4.35. Let N be a feasible acyclic network with strictly positive free flow travel times and
right-constant network inflow rates. Then there exists an IDE with right-constant flow rates.
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Figure 12: A network as considered in Lemma 4.32 (left) and the corresponding static flow network
(right). In the static flow network node v is the source node for all commodities and
there is a single sink node ti for each commodity i. The demand of commodity i is
uv,i(ξ) +

∑
e∈δ−(v)\E0(ξ) f

−
e,i(ξ) if v /∈ Ti and 0 otherwise. The edge costs on the first edges

are the (flow dependent) functions ψvwi while the costs on the second edges are constant.
It is easy to see that Wardrop equilibria in the network on the right then corresponds to
solution to (COPT) for the network on the left and vice versa.

Proof. Since the whole network is acyclic, this is true, in particular, for (V,
⋃
i∈I Ei(ξ)). As all free flow

travel times are strictly positive, the set E0(ξ) is always empty. Thus, we can apply Lemma 4.34 and
Proposition 4.22 to extend any partial IDE with right-constant flow rates. Consequently, Theorem 4.6
together with Proposition 4.10/Corollary 4.11 implies the existence of an IDE with right-constant flow
rates for all times.

Theorem 4.36. Let N be a feasible single-commodity network with strictly positive free flow travel
times and right-constant network inflow rates. Then there exists an IDE with right-constant flow rates.

Proof. As all free flow travel times are strictly positive, the set E0(ξ) is always empty. Proposition 2.67n)
then guarantees that (V,E(ξ)) is always acyclic. Thus, we can apply Lemma 4.34 and Proposition 4.22
to extend any partial IDE with right-constant flow rates. Consequently, Theorem 4.6 together with
Proposition 4.10/Corollary 4.11 implies the existence of an IDE with right-constant flow rates for all
times.

We conclude this subsection with two examples showing why the additional assumptions of The-
orems 4.35 and 4.36 (the network being acyclic and no zero free flow travel times, respectively) are
necessary to allow a node-by-node construction of IDE extensions as in the proofs of those theorems:

Example 4.37. The two-commodity network depicted in Figure 13 demonstrates why in general
multi-commodity networks it is not possible to determine an IDE extension on a node per node basis:
At time 0 there are two nodes at which a flow distribution has to be determined: The two source
nodes s1 and s2. Assume that we start at node s1. Here, we have a network inflow at a rate of 3 for
commodity 1 for which there are two possible paths to take: The direct edge towards the sink t1 or
the path s1v, vs2, s2w,wt1. As we currently do not have any queues in the network, both paths are
currently active. Thus, the only possible flow distribution is to send half the flow into each of the
two paths, leading to queues growing at a rate of 1/2 on both edges s1t1 and s1v. Next, we have to
determine a flow split at node s2. Again, two paths (s2t2 and s2w,ws1, s1v, vt2) are currently active.
However, for one of those we already know that it will have a queue growing at a rate of 1/2 on it.
In order to compensate for that (and keep the flow split of commodity 2 feasible for some proper
interval), we have to send more flow into edge s2t2: More precisely, a flow split of 7/4 into edge s2t2
and 5/4 into s2w results in a stable flow distribution for commodity 2. However, this still creates an
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Figure 13: A two-commodity network. All edges have a capacity of 1 and all edges except for s1t1
and s2t2 have a free flow travel time of 1. For each commodity i ∈ { 1, 2 } flow enters the
network at node si at a rate of 3 during the interval [0, 1] with destination ti.

additional queue on edge s2w which is on one of the paths used by commodity 1. Thus, the previously
determined flow distribution for commodity 1 becomes unstable again. Due to the symmetry of the
given network, starting with the flow distribution at node s2 instead of s1 would not resolve this
problem.

Note that this symmetry also makes it fairly easy to determine an actually stable flow distribution –
however, only by considering both nodes at the same time: Send flow into edges s1t1 and s2t2 at a
rate of 5/3 and into edges s1v and s2w at a rate of 4/3. This means that queues start to grow on
the former edges at a rate of 2/3 and on the latter ones at a rate 1/3 leading to a growth rate of the
current travel times of 2/3 along all source,sink-paths.

Example 4.38. The single-commodity network depicted in Figure 14 demonstrates why in networks
containing edges with zero free flow travel time it can be impossible to find extensions on a node per
node basis: At time 0 there are two nodes at which a flow distribution has to be determined: The
two source nodes s1 and s2. Assume that we start at node s1. Here, we will have an outflow of 2 for
which there are two possible paths to take: The direct edge towards the sink t or the path s1v, vt.
As all edges have a capacity of 1, splitting this flow evenly between the two paths leads to a flow
distribution which does not create any queues (and, thus, is the unique feasible flow split from the
perspective of node s1). However, if we now determine a flow split at node s2 we must send some
additional flow along the path s2, v, t which immediately creates a queue on edge vt. This, in turn,
makes the previously determined flow split at node s1 unstable as it now uses one path with increasing
travel time and one with constant travel time. Due to the symmetry of the network, the same effect
takes place if we first determine a flow distribution at node s2 and consider s1 afterwards.

An actual feasible flow split has the queues on all three edges leading into the sink growing at the
same rate, i.e. we send flow into edges s1t and s2t at a rate of 4/3 and into edges s1v and s2v at rate
of 2/3. This leads to queues growing at a rate of 1/3 on all four paths and, thus, a stable situation.
Note, that we can only obtain this flow split by considering the nodes s1 and s2 at the same time.

4.4. Bibliographic Notes and Open Questions
The first existence result for IDE in single commodity networks with right-constant network inflow
rates was published in [GH19, Theorem 1] (which is joint work with Tobias Harks) with a proof
similar to the one presented here in Subsection 4.3.3 (more precisely, [GH19, Theorem 1] is exactly
Theorem 4.36). For the journal version of this paper ([GHS20]) Leon Sering extended this result to
multi-commodity networks with right-constant network inflow rates by transferring the concept of thin
flows (which was introduced by Koch and Skutella in [KS11] for the full information model and used
by Cominetti, Correa and Larré to show existence of dynamic equilibria in this model in [CCL15]) to
the IDE setting. Additionally, he adapted the general existence proof for dynamic equilibria using
variational inequalities from [CCL15] to the setting of IDE. The existence result presented here in
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Figure 14: A single-commodity network with edges with zero free flow travel time. All edges have a
capacity of 1. The edges s1v and s2v both have a free flow travel time of zero while all
other edges have a free flow travel time of 1. Flow enters the network at each of the nodes
s1 and s2 at a rate of 2 during the interval [0, 1] with destination t.

Subsection 4.3.2 follows the same approach as the former but in a slightly more general setting which
also allows for edges of free flow time zero. For the general case considered in Section 4.2 we give
an alternative proof using the Kakutani–Fan–Glicksberg fixed point theorem instead of an existence
theorem for variational inequalities. Note, however, that the requirement for application of either of
those two existence results turn out to be very similar (in particular, with regards to the required
continuity properties). The connection between IDE thin flow augmentations at single nodes and
Wardrop equilibria (Remark 4.33) was pointed out to us by Roberto Cominetti.

The general existence result completely answers the existence question for IDE (except for the
technical case of network inflow rates which are locally integrable but not locally p-integrable for
any p > 1). In fact, as already discussed in Remark 4.16, this result should also hold for other flow
models and even other behavioural models and it would be an interesting topic for future research to
formulate such a generic existence result. Note, however, that our proof does not completely translate
back to equilibria in the full information setting (or, more generally, “non-causal” predictors in the
framework introduced in [GHKM23]). This is not so much because of the extension lemma itself
but because our version of extending flows does not work well for such equilibria. More precisely,
the third property in our meta-existence theorem (Theorem 4.6) is not satisfied any more when the
distance labels also depend on the future flow evolution (which is also why in the full information
setting partial flows are typically defined differently). However, even in such a setting one might be
able to apply the extension-lemma once when starting with the zero flow to at least get existence of
an equilibrium flow for some finite time horizon.
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5. Computational Complexity of IDE
In the previous chapter we saw that IDE are guaranteed to exist. However, we do not know yet how
to actually compute such an IDE for a given network. In particular, the most general existence result
(Theorem 4.15), is highly non-constructive: It uses a fixed point theorem in an infinite dimensional
vector space to construct single extension and then Zorn’s Lemma to “glue” those together to obtain an
IDE for all times. Nevertheless, this still suggests a natural way splitting of up the task of computing
IDE: First, we have to find a way of computing a single extension. Second, we have to show that a
finite number of such extensions suffices to at least cover a given finite time horizon. Whether such a
finite time horizon suffices, i.e. whether IDE terminate in finite time, will be the focus of the next
chapter (Chapter 6), while we will focus on the first two points in this chapter.

As we are interested in exact (combinatorial) algorithms here, we will only consider networks with
right-constant network inflow rates and flows with right-constant flow rates (as for general measurable
inflow rates it would not even be clear how to represent them exactly in finite space). For this case we
have seen in Section 4.3 that extending a partial IDE is equivalent to finding an IDE-thin flow. This
leads to the generic algorithm for computing right-constant IDE described in Algorithm 1.

Algorithm 1: A generic algorithm for computing IDE
Input :A network N with right-constant network inflow rates and a time horizon T ≥ 0
Output :A partial IDE (f, T ) with right-constant flow rates in N

1 Set (f, ξ)← (0, 0)
2 while ξ < T do
3 Compute an IDE-thin flow (x+, x−, a) for (f, ξ)
4 Let g be the flow defined by extending (f, ξ) with (x+, x−, a) (cf. (30))
5 Determine some ε > 0 such that (g, ξ + ε) is a partial IDE
6 (f, ξ)← (g, ξ + ε)

7 end while
8 return (f, ξ)

This algorithm is clearly correct (by Proposition 4.22), however, it still has two short-comings: First,
we do not know yet how to actually compute IDE-thin flows and, second, it is not obvious whether a
finite number of extensions suffices to reach the desired time horizon T . We will address these two
problems separately in the following two sections. In the third section of this chapter we will then
turn to questions on the complexity of computing IDE and, in particular, show the hardness of several
natural decision problems involving IDE.

5.1. Computing IDE-Thin Flows
In Section 4.3 we saw two different ways of proving existence if IDE-thin flows. One for general
networks using Kakutani’s fixed point theorem (Subsection 4.3.2) and one for more restricted networks
(acyclic or single-commodity) using a convex optimization problem (Subsection 4.3.3). Similarly, we
will now present two different ways of computing IDE-thin flows – each of them following one of the
two existence proofs.

5.1.1. Multi-Commodity Networks

According to Proposition 4.22 the task of computing an IDE-thin flow for multi-commodity networks
is equivalent to finding a solution to eqs. (31) to (37) and (39). We know from Corollary 4.30 that
such a solution must exist. However, the proof of Corollary 4.30 and, more importantly, Lemma 4.29
does not tell us anything about how to actually find such a solution as its existence just follows from
Kakutani’s Fixed Point Theorem.
Hence, we have to take a closer look at the system of equations itself and see if we can somehow
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solve it in a more constructive way. Here, the main obstacle for doing that seems to be the constraint

x−e,i =
x+
e,i · νe

max {x+
e , νe }

for all i ∈ I, e ∈ E0(ξ) (31)

as it is both non-linear and non-convex. Because of this, we will now restrict ourselves to situations
where there are no active edges of current travel time zero. In such a situation we can not only omit
(31) but also simplify (36) using Proposition 2.67o) to obtain the following system of equations:

x−e,i = 0 for all i ∈ I, e ∈ E0(ξ) (31’)

x−e,i = f−e,i(ξ) for all i ∈ I, e ∈ E \ E0(ξ) (32)∑
e∈δ+(v)

x+
e,i = uv,i(ξ) +

∑
e∈δ−(v)

x−e,i for all i ∈ I, v ∈ V \ Ti (33)

∑
e∈δ+(t)

x+
e,i ≤ ut,i(ξ) +

∑
e∈δ−(t)

x−e,i for all i ∈ I, t ∈ Ti (34)

x+
e,i = 0 for all e ∈ E \ Ei(ξ) (35)

av,i = min
{
ψe(x

+
e ) + aw,i

∣∣ e = vw ∈ Ei
}

for all i ∈ I, v ∈ V \ V †i (36’)

av,i = 0 for all i ∈ I, v ∈ V †i ∪ Ti (37’)

av,i = ψe(x
+
e ) + aw,i if x+

e,i > 0 for all i ∈ I, v ∈ V, e = vw ∈ δ+(v). (39)

Now, the only remaining difficulties are to decide which edges to send flow into and under which
regime the queues on edges with currently empty queue will be (increasing or depleting). Once these
decisions are made the remaining problem becomes a linear problem. Thus, we equivalently write the
above system of constraints as the following MIP:

x−e,i = 0 for all i ∈ I, e ∈ E0(ξ)

x−e,i = f−e,i(ξ) for all e ∈ E \ E0(ξ)∑
e∈δ+(v)

x+
e,i = uv,i(ξ) +

∑
e∈δ−(v)

x−e,i for all i ∈ I, v ∈ V \ Ti

∑
e∈δ+(t)

x+
e,i ≤ ut,i(ξ) +

∑
e∈δ−(t)

x−e,i for all i ∈ I, t ∈ Ti

x+
e,i = 0 for all e ∈ E \ Ei(ξ)
ze ∈ { 0, 1 } for all i ∈ I, e ∈ E with Qe(ξ) = 0

qe = x+
e − νe for all e ∈ E with Qe(ξ) > 0

qe =

{
x+
e − νe, if ze = 1

0, else
for all e ∈ E with Qe(ξ) = 0

x+
e ≤ νe if ze = 0 for all e ∈ E with Qe(ξ) = 0

x+
e ≥ νe if ze = 1 for all e ∈ E with Qe(ξ) = 0

av,i ≤
qe
νe

+ aw,i for all i ∈ I, v ∈ V \ { ti } , e = vw ∈ Ei(ξ)

ai,v = 0 for all i ∈ I, v ∈ V †i ∪ Ti
ye,i ∈ { 0, 1 } for all i ∈ I, e ∈ Ei(ξ)
x+
e,i = 0 if ye,i = 0 for all i ∈ I, e ∈ Ei(ξ)

av,i =
qe
νe

+ aw,i if ye,i = 1 for all i ∈ I, e = vw ∈ Ei(ξ)

(TF-MIP)

Here, the variable qe denotes the rate at which the queue length on edge e will change (i.e. the value
of νe · ψe(x+

e )), the binary variable ze denotes for queues which are empty at time ξ whether they will
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remain empty (ze = 0) or whether a queue will start to form after time ξ (ze = 1) and the binary
variable ye,i indicates whether a currently active edge will stay active after time ξ and, thus, whether
we are allowed to send flow into it (ye,i = 1 means that e remains active for commodity i).

Lemma 5.1. Let (f, ξ) be a partial IDE with right-constant flow rates in a network with right-constant
network inflow rates such that Ei(ξ) ∩ E0(ξ) = ∅ for all commodities i ∈ I. Then a vector (x+, x−, a)

is an IDE-thin flow for (f, ξ) if and only if there exist binary vectors (ye,i) ∈ { 0, 1 }
∑
i∈I{ i }×Ei(ξ) and

(ze) ∈ { 0, 1 }{ e∈E|Qe(ξ)=0 } and a vector (qe) ∈ RE such that (x+, x−, a, q, y, z) solves (TF-MIP).

Proof. It is easy to see that (TF-MIP) is equivalent to (31’), (32), (33), (34), (35), (36’), (37’) and
(39) by observing that ye,i = 1 is equivalent to e being an edge which remains active for commodity i
during the extension phase and ze = 1 is equivalent to x+

e ≥ νe.
Thus, it suffices to show that in the setting of the lemma constraint (31’) is equivalent to (31) while

(36’) and (37’) are equivalent to (36). The former is the case since the lemma ensures that all edges in
E0(ξ) are inactive (for all commodities) and, therefore, have zero inflow by (35). For the latter, we
observe that for any commodity i the set of active edges Ei(ξ) is acyclic by Proposition 2.67n) (using the
assumption that there are no active edges with zero travel time). Thus, we can apply Proposition 2.67o)
to the subgraph (V \ V †i , E[V \ V †i ] ∩ Ei(ξ)) with edge costs (ψe(x

+
e )) (see Proposition 4.20) to prove

that (av,i)v∈V \V †i
solves (36) if and only if it solves (36’) and (37’). Finally, for any dead-end node

v ∈ V †i constraints (37’) and (37) are just the same.

Now, for any given vectors (ye,i) and (ze) the above problem becomes a linear problem (and, thus,
efficiently solvable). Since there are only finitely many such binary vectors we can, in principle
determine IDE-thin flows in situations where there are no active edges of current travel time zero
by solving the remaining linear problem for all possible vectors (ye,i) and (ze) and stop as soon as
we found a solution. Corollary 4.30 guarantees that this will happen eventually. This immediately
implies the following corollary:

Corollary 5.2. Let (f, ξ) be a partial IDE with right-constant flow rates in a feasible network with
right-constant network inflow rates such that E0(ξ) = ∅. Then we can compute an IDE-thin flow for
(f, ξ) in finite time.

In particular, we can always compute IDE-thin flows in feasible networks where all free flow travel
times are strictly positive.

Of course, in general, such an algorithm will have an exponential worst case runtime. However, at
least for small instances it might still be feasible. In particular, since we do not really have to try
all possible vectors (ye,i). For example, we know that for any node v ∈ V \ V †i and any commodity i
we have to set ye,i = 1 for at least one edge e ∈ Ei(ξ) ∩ δ+(v) – and this set, the set of active edges
leaving a given node v, might often be quite small, maybe even containing only a single edge (after
all, this is the set of starting edges of shortest v, Ti-paths). Moreover, if we only have a single edge
with ye,i = 1 for each commodity at some node, the value of ze is also directly determined. Such
observations have also been made by Hagenmaier who implemented for his master’s thesis [Hag23] an
algorithm for computing (approximate) IDE in multi-commodity settings.

Moreover, in certain situations (e.g. acyclic networks) we might be able to break down the problem
(TF-MIP) into smaller augmentation-subproblems which can be solved separately using the partition
approach from Lemma 4.26. Nevertheless, for general networks the worst case number of potential
choices for ye,i and ze will grow exponentially with the size of the network.

5.1.2. Single-Commodity Networks

In this subsection we will now focus on the case of single-commodity networks (with right-constant
network inflow rates). Additionally, we will again assume that there are no active edges of current
travel time zero. As seen in Subsection 4.3.3, this situation allows us to determine IDE-thin flows
on a node-by-node basis by finding solutions to the optimization problem (COPT) (cf. Lemmas 4.32
and 4.34). As this problem is a convex optimization problem, approximate solutions can be found
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efficiently using tools from convex optimization (see e.g. [BV04]). Even better, though, we will show
in this subsection that we can also find exact solutions using a simple water-filling procedure.
More precisely, we want to find a feasible solution (x+

e )e∈δ+(v) to (COPT) which also satisfies the
necessary KKT-conditions. Looking at the proof of Lemma 4.32 we can see that this suffices to obtain
an IDE-thin flow augmentation. Thus, our goal is to find a solution (x+

e )e∈δ+(v)∩E(ξ) ∈ Rδ
+(v)∩E(ξ)
≥0

and av ∈ R satisfying∑
e∈δ+(v)∩E(ξ)

x+
e = uv(ξ) +

∑
e∈δ−(v)\E0(ξ)

f−e (ξ) (43)

ψe(x
+
e ) + ǎw = av for all e = vw ∈ δ+(v) ∩ E(ξ) with x+

e > 0 (44)

ψe(x
+
e ) + ǎw ≥ av for all e = vw ∈ δ+(v) ∩ E(ξ) (45)

where ǎw are the already determined node labels at the nodes in the inner part of the network. In
words: We want to distribute the incoming flow (uv(ξ) +

∑
e∈δ−(v)\E0(ξ) f

−
e (ξ)) to the currently active

outgoing edges in such a way that all used edges are the start of a v, T -path with the same change of
current travel time (ψe(x+

e ) + ǎw) while all unused edges only lead to v, T -paths with equal or larger
such change. Such a solution can now be determined quite straightforwardly thanks to the simple
form of the left hand side of (44) and (45) as functions in x+

e : Namely, these functions all consist of a
constant part followed by a linearly increasing part (see (38) for the definition of ψe). We will call
such function truncated linear:

Definition 5.3. We call a function λ : R→ R truncated linear if it is of the form

λ(x) =

{
α, if x ≤ γ
α+ β(x− γ), if x ≥ c

for some constants α, β, γ ∈ R (see Figure 15 for an example of such a function).

γ

α

λ

slo
pe

=
β

x

Figure 15: An example of a truncated linear function with parameters α, β, γ.

Thus, our task now reduces to finding for any given value b ≥ 0 and set of truncated linear functions
λ1, . . . , λm a partition of b into x1, . . . , xm ≥ 0 such that

∑m
e=1 xe = b and λe(xe) ≤ λe′(xe′) for

any e, e′ ∈ [m] with xe > 0. Intuitively, we can find such a partition by first sorting the functions
by increasing αe. Starting from x1 = x2 = · · · = xm = 0 we then increase x1 until we reach
λ1(x1) = λ2(0) = α2. After that, we simultaneously increase x1 and x2 in such a way that we always
have λ1(x1) = λ2(x2) until we reach λ3(0). From here on, we simultaneously increase x1, x2 and x3

and so on until we have found a partition of b (see Figure 16 for a graphic depiction of this process).
We formalize this approach in Algorithm 2.
Remark 5.4. This approach can actually be useful for other convex optimization problem of similar
form as well and is often called “water filling” there as well – see e.g. [BV04, Example 5.2]. This name
comes from the following interpretation of the procedure: We fill a volume b into a basin which is
divided into m parts of different depth. More precisely, part e has a depth of D − αe (where D is the
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Algorithm 2: Water filling procedure
Input :A number b ≥ 0 and a finite set of truncated linear functions λ1, . . . , λm with

parameters (αe, βe, γe) satisfying βe > 0 and γe ≥ 0 for all e ∈ [m]
Output :Values x1, . . . , xm ≥ 0 such that

∑m
e=1 xe = b and λe(xe) ≤ λe′(xe′) for any

e, e′ ∈ [m] with xe > 0

1 Renumber the functions such that λ1(0) ≤ λ2(0) ≤ · · · ≤ λm(0)

2 Determine the maximal k ∈ { 0, 1, . . . ,m } with
∑k
e=1 max {x | λe(x) ≤ λk(0) } ≤ b

3 if k < m and
∑k
e=1 max {x | λe(x) ≤ λk+1(0) } ≤ b then

4 xe ←


max {x | λe(x) ≤ λk+1(0) } , for e ≤ k
b−

∑
e′≤k xe′ , for e = k + 1

0 for e > k + 1

5 else

6 x′e ←

{
max {x | λe(x) ≤ λk(0) } , for e ≤ k
0 for e > k

7 b′ ← b−
∑k
e′=1 x

′
e′

8 xe ← x′e +
1/βe∑

e′≤k
1/β

e′
· b′ for e ≤ k

9 end if
10 return x1, . . . , xm

λ1

1 2-3 4-5 6

λ2

1-2 34-56

λ3

1-4 5 6

λ4

1-6

Figure 16: A graphic depiction of the water filling procedure applied to four truncated linear functions.
The blue vertical lines denote the values of x1 to x4 at six intermediate steps.

maximal depth of the basin) and its floor has an area of 1/βe (cf. Figure 17). We now start to fill water
into this basin at a rate of 1. At first only the part with the largest depth fills up and the water level
rises at a speed of βe. As soon as the water level reaches the floor of the part with the next largest
depth, this part starts to fill up as well and the water level now rises at a speed of 1/(1/βe + 1/βe′).
This process continues until all water is in the basin.

Note, that this intuition only works for the case where we have γe = 0 for all e ∈ [m]. Otherwise,
we can imagine that for any part of the basin an (initially empty) tank of volume γe is attached to
the bottom of its floor. As soon as the water level reaches such a floor any additional water first fills
up this tank and the water level remains constant until the tank is full – at which point the water
level starts to rise again as described previously. Figure 18 shows this for the situation of Figure 16.

Proposition 5.5. Algorithm 2 is correct and has a worst case runtime of O(m2).

Proof. We first observe that for any e ∈ [m] and c ≥ λe(0) the value max{x|λe(x) ≤ c} is well defined
(since λe is continuous, non-decreasing and unbounded) and can be computed in constant time (due to
the simple form of λe). Thus, line 2 has a worst case runtime of O(m2). Since this also clearly bounds
the runtime of any other line, this already determines the worst case runtime for the whole algorithm.
To show correctness we follow the same case distinction as the algorithm itself:
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volume = b

1/β1

1/β2

1/β3

1/β4

α1

α2

α3

α4

Figure 17: A basin filled with water corresponding to a solution to the problem of finding values
x1, . . . , x4 ≥ 0 such that x1 + · · · + x4 = b and λe(xe) = αe + βexe ≤ λe′(xe′) for all
e, e′ ∈ [4] with xe > 0.

1. Case: xe defined in line 4: In this case we directly get xe ≥ 0 for all e ∈ [m] as well as

m∑
e=1

xe =
∑
e≤k

xe + xk+1 = b.

Since we have xe = max {x | λe(x) ≤ λk+1(0) } for all e ≤ k, the maximality of k ensures
that xk+1 < max {x | λk+1(x) ≤ λk+1(0) } = γk+1 and, therefore, λk+1(xk+1) = αk+1. At
the same time we have λe(xe) = λk+1(0) = αk+1 for all e ≤ k by the choice of xe and
λe(xe) = λe(0) ≥ λk+1(0) = αk+1 for all e > k + 1 due to the order chosen in line 1. Thus, the
output is correct in this case.

2. Case: xe defined in lines 6 and 8: In this case we have k > 0 and b′ ≥ 0 due to the choice of k
in line 2. From this, we directly get xe ≥ 0 for all e ∈ [m] as well as

m∑
e=1

xe =

k∑
e=1

xe =

m∑
e=1

(
x′e +

1/βe∑
e′≤k

1/βe′
· b′
)

= b′ +

m∑
e=1

x′e = b.

Furthermore, we have xe ≥ x′e ≥ γe and, hence,

λe(xe) = λe(x
′
e) + βe · (xe − x′e) = λk(0) +

b′∑
e′≤k

1/βe′
=: d

for all e ≤ k. At the same time the fact that we are in the else-branch of Algorithm 2 guarantees
that if k < m holds, then there exists at least one e′ ≤ k with d = λe′(xe′) ≤ λk+1(0). The
order chosen in line 1 then ensures that we have λe(xe) = λe(0) ≥ λk+1(0) ≥ d for all e ≥ k+ 1.
Thus, the output in this case is correct as well.

As described before, this algorithm now allows us to compute IDE-thin flow augmentations in
polynomial time:

Lemma 5.6. Let (f, ξ) be a partial IDE with right-constant flow rates in a feasible single-commodity
network with right-constant network inflow rates, v ∈ V a node such that δ−(v) ∩ E(ξ) = ∅ and
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1
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1
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Figure 18: An alternative depiction of the water filling procedure depicted in Figure 16 using the
basin-intuition described in Remark 5.4.
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δ+(v)∩E(ξ)∩E0(ξ) = ∅. Furthermore, let (x̌+, x̌−, ǎ) be an IDE-thin flow for (f |G[V \{ v }] , ξ). Then we

can compute an IDE-thin flow augmentation for (x̌+, x̌−, ǎ) in O(1+|δ+(v) ∪ δ−(v)|+|δ+(v) ∩ E(ξ)|2).
Moreover, the value âv of the IDE-thin flow augmentation is uniquely determined by ǎ, uv(ξ), f−e (ξ)

for e ∈ δ−(v) \ E0(ξ) and the sets δ+(v) ∩ E(ξ) and { e ∈ δ+(v) | Qe(θ) > 0 }.

The first part of this lemma can be shown using the proof of Lemma 4.32 together with the intuition
given at the start of this subsection. Here, however, we will provide a more direct proof which is
independent of the proof of Lemma 4.32.

Proof. We start by observing that for the given situation (a single-commodity and V̂ = { v }) equations
(3̂1) to (3̂9b) reduce to

x̂−e = 0 for all e ∈ (δ+(v) ∪ δ−(v)) ∩ E0(ξ)

x̂−e = f−e,i(ξ) for all e ∈ (δ+(v) ∪ δ−(v)) \ E0(ξ)∑
e∈δ+(v)

x̂+
e = uv(ξ) +

∑
e∈δ−(v)

x̂−e if v /∈ T

∑
e∈δ+(v)

x̂+
e ≤ uv(ξ) +

∑
e∈δ−(v)

x̂−e if v ∈ T

x̂+
e = 0 for all e ∈ (δ+(v) ∪ δ−(v)) \ E(ξ)

âv = min { ǎw + ψe(x̂
+
e ) | e = vw ∈ δ+(v) ∩ E(ξ), w /∈ V † } if v /∈ T ∪ V †

âv = 0 if v ∈ T ∪ V †

âv = ǎw + ψe(x̂
+
e ) if x+

e > 0 for all vw ∈ δ+(v)

Thus, computing an IDE-thin flow augmentation in the given situation is equivalent to finding a
solution to the above system of equations.

1. Case: v ∈ T : Here, we can directly set x̂+
e := 0 for all e ∈ Ê = δ+(v) ∪ δ−(v), x̂−e := f−e (ξ) for

all e ∈ Ê \ E0(ξ), x̂−e := 0 for all e ∈ Ê ∩ E0(ξ) and âv := 0 to obtain such a solution.

2. Case: v ∈ V †: In this case we have uv(ξ) = 0 since the whole network is feasible and we have∑
e∈δ−(v) f

−
e (ξ) = 0 due to Proposition 3.66. Thus, we can choose (x̂+, x̂−, â) in the same way

as in the previous case.

3. Case: v /∈ T ∪ V † and uv(ξ) +
∑
e∈δ−(v) f

−
e (ξ) = 0: Again, we can directly set x̂+

e := 0 for
all e ∈ Ê, x̂−e := 0 = f−e (ξ) for all e ∈ Ê \E0(ξ) and x−e := 0 for all e ∈ Ê ∩E0(ξ). Additionally,
we define

âv := min { ǎw + ψe(x̂
+
e ) | e = vw ∈ δ+(v) ∩ E(ξ), w /∈ V † } ,

where we note that the minimum is well defined as, according to Proposition 2.67e) there exists
at least one active edge leaving v. This then gives us a solution to the given set of equations.

4. Case: v /∈ T ∪ V † and uv(ξ) +
∑
e∈δ−(v) f

−
e (ξ) > 0: In this case we define functions

λe : R→ R, x 7→ ψe(x) + ǎw for e ∈ δ+(v) ∩ E(ξ)

and observe that those are truncated linear functions with parameters

αe :=

{
ǎw − 1, if Qe(ξ) > 0

ǎw, if Qe(ξ) = 0
, βe := 1

νe
and γe :=

{
0, if Qe(ξ) > 0

νe, if Qe(ξ) = 0
.

As in the previous case we have δ+(v) ∩ E(ξ) 6= ∅ since v is neither a sink nor a dead-end
node. Thus, we can use Algorithm 2 (with worst case runtime O(|δ+(v) ∩ E(ξ)|2) according
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to Proposition 5.5) to obtain a solution (xe)e∈δ+(v)∩E(ξ) with
∑
e∈δ+(v)∩E(ξ) xe = uv(ξ) +∑

e∈δ−(v) f
−
e (ξ). We now define

x̂+
e :=

{
xe, for e ∈ δ+(v) ∩ E(ξ)

0, for e ∈ Ê \ E(ξ)
and x̂−e :=

{
f−e (ξ), for e ∈ Ê \ E0(ξ)

0, for e ∈ Ê ∩ E0(ξ)
.

Finally, we pick any edge e = vw ∈ δ+(v)∩E(ξ) with xe > 0 and set âv := λe(xe) = ǎw+ψe(x̂
+
e ).

This then defines a solution to the system of equations stated at the beginning of the proof.

Now, for the second path of the lemma, i.e. the uniqueness of âv, let (x̂+, x̂−, â) and (x̂′+, x̂′−, â′)
be two IDE-thin flow augmentations (or, equivalently, solutions to the system of equations given at
the beginning of the proof) and assume for contradiction that âv < â′v. We note that this is certainly
impossible if v ∈ T ∪ V † or if there is no outflow to be distributed from node v at time ξ. So, we can
assume that there is at least one edge e = vw ∈ δ+(v) with x̂+

e > 0. For all those edges we then have

ǎw + ψe(x̂
+
e ) = âv < â′v ≤ ǎw + ψe(x̂

′+
e )

and, therefore, ψe(x̂+
e ) < ψe(x̂

′+
e ). Since all ψe are non-decreasing functions, this implies x̂+

e < x̂′+e for
all such edges and, thus, ∑

e∈δ+(v)

x̂+
e <

∑
e∈δ+(v)

x′+e ,

which is a contradiction to both (x̂+, x̂−, â) and (x̂′+, x̂′−, â′) being IDE-thin flow augmentations for
the same situation.

Corollary 5.7. Let (f, ξ) be a partial IDE with right-constant flow rates in a feasible single-commodity
network with right-constant network inflow rates such that E0(ξ) = ∅. Then we can compute an
IDE-thin flow for (f, ξ) in O(|V |+ |E|+ |E(ξ)|2) time.

Proof. Since there are no edges of current travel time zero Proposition 2.67n) guarantees that the
set of active edges is acyclic. Thus, there exists a topological order v1 � v2 � · · · � vn on (V,E(ξ))
and we have δ−Gk−1

(vk) ∩ E(ξ) = ∅ where Gk′ := G[{ v1, . . . , vk′ }] is the subgraph of the first k nodes.
Therefore, starting with the empty vector (which is an IDE-thin flow for G0) we can iteratively apply
Lemma 5.6 to obtain IDE-thin flows for all Gk until, after |V | steps, we finally have an IDE-thin flow
for the whole network.

Remark 5.8. While Lemma 5.6 guarantees that IDE-thin flows in single-commodity networks are
unique with respect to the node labels av, the same need not be true with respect to the flow rates
x+
e and x−e . This is because of the constant part of the functions ψe which allow situations in which

different flow distributions lead to the same value for the node label av.

It is also interesting to note that for the full information setting the analogous partial uniqueness
statement for thin flows holds as well ([CCL15, Theorem 4]). There this result then directly implies
that for any given single-source single-sink network with constant network inflow rate all equilibrium
flows with right-continuous flow rates induce the same travel times in the network ([CCL15, Theorem
6]).4 This, however, is not true for IDE as one can already see in quite simple instances like the one
from Example 3.65.
The reason for this discrepancy lies, roughly speaking, in the different way extensions work in the

two models: In the full informations an extension completely determines the whole source-sink path
for any particle handled in this extension. Thus, the only way different choices of the flow distribution
within such an extension could affect future extension would be via the induced travel times in the
network – but those are unique since the node labels are unique. An IDE-extension, on the other
hand, only determines the next edge for every involved particle. Thus, different flow distributions can

4Actually, the statement is also true without the restriction to right-continuous flow rates – however, this follows not
as directly from the uniqueness of the thin flows (see [OSK22]).
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easily lead to different travel times further down the line without any effect on the node labels during
the extension period.

On the flip side, for IDE we will see in the next section that we can use the uniqueness of the node
labels in IDE-thin flows to show that a finite number of extensions suffices to construct an IDE for
any finite time horizon – a question that is still open in the full information setting.

5.2. Bounding the Number of Extensions
In the previous section we saw that in many cases we can compute a single extension in finite time
(and even efficiently for single-commodity networks). In order to deduce from this that we can also
compute IDE over a finite time horizon in finite time using Algorithm 1, we still have to show that a
finite number of such extensions suffices. This, as well as providing some upper and lower bounds on
the number of required extensions, will be the focus of this section.

5.2.1. Upper Bound for Single-Commodity Networks

Given some partial IDE (f, ξ) with right-constant flow rates there are two natural ways to estimate
how many extensions are necessary in order to compute this flow with an extension algorithm of the
form of Algorithm 1:

• Count the number of (maximal) intervals with constant flow rates: As each such interval clearly
requires its own extension, this gives us a lower bound for the number of required extensions.

• Count the number of times anything happens which could make a current extension invalid,
i.e. any change in network inflow or edge outflow rates, a new edge becoming active or a
queue depleting (note that these are exactly the four types of events we used in the proof of
Proposition 4.22 to determine the length of the extension period). Since we can then always use
a single extension to get from one such time to the next, this gives us an upper bound on the
number of required extensions.

We formalize these two concepts in the following definition:

Definition 5.9. Let (f, ξ) be a partial flow with right-constant flow rates. A phase of (f, ξ) is a
maximal proper subinterval [a, b) ⊆ [0, ξ) such that all flow rates of f are constant during [a, b).
We say that that a (simple) event occurs at time θ < ξ at some node v ∈ V if there exist two

phases [a, θ) and [θ, b) or a single phase [a, b) with θ ∈ (a, b) and one of the followings things happen
at time θ:

• The outflow rate of one of the edges leading towards v changes, i.e. there exists an edge e ∈ δ−(v)
and a commodity i ∈ I with f−e,i(a) 6= f−e,i(θ).

• The network inflow rate uv,i at node v changes for one of the commodities.

• A queue on one of the edges leaving v depletes, i.e. we have Qe(θ) = 0 and ∂−Qe(θ) < 0 for
some edge e ∈ δ+(v).

• An edge leaving v becomes newly active, i.e. there exists a commodity i, an edge e ∈ δ+(v) and
some time ϑ < θ such that e ∈ Ei(θ) while e was inactive for i during [ϑ, θ).

If an event occurs at a node v, we also say that v is responsible for this event. Moreover, when
counting events we will always count all events happening at the same time as one event.
We say that a Zeno-event occurs at time θ < ξ if there exists no phase [a, θ).
Finally, we call a partial IDE (f, ξ) a simple IDE if each of its phases begins with a simple event.

A Zeno-event happens at a time θ if the phases leading up to this time show a Zeno-type behaviour,
i.e. there is an infinite sequence of phases [a0, a1), [a1, a2), [a2, a3), . . . with ak → θ. Such a flow then
has an infinite number of phases and clearly cannot be computed by an extension based algorithm in
finite time. Note that it is easy to construct such non-simple IDE even in very simple networks: Just
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consider a network consisting of a source node, a sink node and two parallel edges with equal free
flow travel time connecting them. If flow then enters the network at a rate lower than the capacity of
each of the two edges, then any flow split between the two is an IDE. In particular, we may partition
the interval [0, 1] into an infinite number of shorter and shorter intervals (e.g. [0, 1

2 ), [ 1
2 ,

3
4 ), [ 3

4 ,
7
8 ), . . . )

and then alternating between sending all flow into one edge and sending all flow into the other edge
results in an IDE which has a Zeno-event at time θ = 1.

Thus, it is clearly not possible to construct all IDE with Algorithm 1. Instead, we want to determine
in which networks simple IDE are guaranteed to exist and whether we can then compute such an IDE
with our extension based algorithm. Towards this goal, we will specialize Algorithm 1 a bit further in
order to give it the best possible chance in succeeding at this task. Namely, we always want to choose
the length of the extension phase as long as it is safely possible, that is until the next event happens.
This leads to Algorithm 3.

Algorithm 3: An extension based algorithm for computing IDE
Input :A network N with right-constant network inflow rates and a time horizon T ≥ 0
Output :A partial IDE (f, T ) with right-constant flow rates in N

1 Set (f, ξ)← (0, 0)
2 while ξ < T do
3 Compute an IDE-thin flow (x+, x−, a) for (f, ξ)
4 Let g be the flow defined by extending (f, ξ) with (x+, x−, a) (cf. (30))
5 Choose ε← min { ε > 0 | an event occurs in g at time ξ + ε }
6 (f, ξ)← (g, ξ + ε)

7 end while
8 return (f, ξ)

Lemma 5.10. Let N be a feasible network with right-constant network inflow rates. Let (f (k), ξk)k
be the sequence of partial IDE computed by Algorithm 3. Then limk(f (k), ξk) is a simple IDE.

Proof. First of all, every (f (k), ξk) is a partial IDE since we start with a partial IDE and every
extension is correct by the same proof as for the sufficiency part of Proposition 4.22 (the choice of ε
there exactly matches that in line 5 of Algorithm 3). They are also simple by construction.

Then since all (f (k), ξk) are partial IDE with right-constant flow rates, so is (f, ξ) := limk(f (k), ξk)
by Proposition 4.10. To show that it is also simple let [a, b) ⊆ [0, ξ) be any phase of (f, ξ). Then there
exists some k ∈ N0 such that a < ξk. Hence, [a,min { b, ξk }) is a phase of the simple IDE (f (k), ξk)
and, therefore, starts with a non-degenerate event. Since we have (f (k), ξk) � (f, ξ), this is then also
true for (f, ξ).

Note that the lemma neither states that Algorithm 3 terminates nor that the computed sequence
converges to a partial IDE until T . It does, however, suggest a way of showing termination. Namely,
if we can show that in a given network and for a given time horizon there is a finite bound on the
number of events any simple IDE in this network can have before T , then this immediately shows that
Algorithm 3 is guaranteed to terminate in this network. Moreover, this bound then also immediately
gives us a bound on the number of extensions performed by Algorithm 3.

In the following we will do exactly that for the case of single-commodity networks with right-constant
network inflow rates with finitely many discontinuities and strictly positive free flow travel times. Note,
that in this case Corollary 5.7 ensures that we can compute each individual extension in polynomial
time.

Lemma 5.11. Let (f, ξ) be a simple IDE in a single-commodity network, v ∈ V \ T a non-sink node
with at least one outgoing edge, Ẽv ⊆ δ+(v) some subset of outgoing edges from v and [a, b) ⊆ [0, ξ)
an interval satisfying the following properties:

• uv is constant on [a, b),

• f−e is constant on [a, b) for all e ∈ δ−(v),
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• Lw are affine functions on [a, b) for all vw ∈ Ẽv and

• δ+(v) ∩ E(θ) ⊆ Ẽv for all θ ∈ [a, b).

Then v is responsible for at most 2|Ẽv|4
|Ẽv|+1 events during [a, b).

Proof. We enumerate the edges in Ẽv by vw1, . . . , vwK and define for each of those edges vwk a
function

Λk : [a, b)→ R, θ 7→ Cvwk(θ) + Lwk(θ).

Since f is a flow with right-constant flow rates without any Zeno-events, these functions are all
continuous and piecewise linear. In particular, their left- and right-derivatives exist at all times
θ ∈ (a, b). Furthermore, we observe the following properties of these functions for all edges vwk ∈ δ+(v)
and all times θ ∈ (a, b):

(i) vwk is active at time θ if and only if Λk(θ) = min { Λk′(θ) | k′ ∈ [K] }.

(ii) vwk becomes newly active at time θ if and only if vwk ∈ E(θ) and ∂−Λk(θ) < ∂−Lv(θ).

(iii) vwk becomes inactive at time θ if and only if vwk ∈ E(θ) and ∂+Λk(θ) > ∂+Lv(θ).

We will now show two further key properties of these functions (cf. Figures 19 and 20 for a visualization
of all these properties):

Claim 7. If an edge vwk is inactive during some subinterval (a′, b′) ⊆ [a, b), then Λk is convex on
(a′, b′).

Claim 8. We have min { ∂−Λk(θ) | vwk ∈ E(θ) } ≤ ∂+Lv(θ) for all θ ∈ (a, b).

Proof of Claim 7. Since edge vwk is inactive during (a′, b′) no flow enters this edge during this time.
Thus, the queue length function of this edge consists of at most two linear segments during this
interval: One where the queue depletes (at a rate of −νvwk) and one where it stays empty. The
combination of these to segments is clearly a convex function. �

Proof of Claim 8. We define the set E+(θ) := { vwk ∈ E(θ) | ∂+Λk(θ) = ∂+Lv(θ) } and observe that
this set contains exactly those edges which are active right after time θ. Thus, flow may only enter
those edges immediately after time θ. Since the total inflow into v is constant on (a, b), this means
that there must be at least one edge vwk′ ∈ E+(θ) such that there is at least as much inflow into this
edge after θ as before. This directly implies ∂−Λk′(θ) ≤ ∂+Λk′(θ) and, therefore,

min { ∂−Λk(θ) | vwk ∈ E(θ) } ≤ min { ∂−Λk(θ) | vwk ∈ E+(θ) } ≤ ∂−Λk′(θ) ≤ ∂+Λk′(θ) = ∂+Lv(θ).
�

Now, since the total inflow into node v is constant during [a, b) we get from Lemma 5.6 that there
are only finitely many possible values for ∂+Lv during this interval. The following claim then implies
that the lowest of those values can only appear a finite number of times. Iteratively applying this
claim then shows that this is true for all of those finitely many values. This then reduces the lemmas
statement to showing that only finitely many events can occur during any interval with constant ∂Lv.

Claim 9. Let (a′, b′) ⊆ [a, b) be some subinterval with b′ < b and α ∈ R some value such that we have
∂+Lv(θ) ≥ α for all θ ∈ (a′, b′) as well as ∂−Lv(b′) > α = ∂+Lv(b

′). Then there exists an edge vwk
which is inactive during (a′, b′) and becomes newly active at time b′.

Proof. According to Claim 8 there exists some edge vwk ∈ E(θ) with ∂−Λk(b′) ≤ ∂+Lv(b
′) = α <

∂−Lv(b
′). Thus, vwk becomes newly active at time b′ by property (ii). Now, assume that this edge

was active at some time during (a′, b′) and let c ∈ (a′, b′) be the last such time. Then Λk is convex on
(c, b′) by Claim 7 and, hence, we have ∂−Λk(θ) ≤ ∂−Λk(b′) ≤ α for all θ ∈ (c, b′). At the same time
we have ∂−Lv(θ) ≥ α for those θ and ∂−Lv(θ) > α for some proper subinterval. Together, this is now
a contradiction to Λk(c) = Lv(c) and Λk(b′) = Lv(b

′) (which holds due to property (i) since vwk is
active at both times). Thus, vwk cannot been active at any time during (a′, b′) and, therefore, proves
our claim. �
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Figure 19: An example for the setting of Lemma 5.11: A single node v with a constant inflow rate
(here only over a single edge) and with three outgoing edges vw1, vw2 and vw3. The
sequence of pictures shows snapshot of all the times where an event happens at node v.
The functions Lwk and Λk corresponding to this sequence are depicted in Figure 20.
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Figure 20: An example for the functions Λk defined in the proof of Lemma 5.11 for the situation
depicted in Figure 19. The topmost diagram depicts the distance label functions Lwk
(which are linear for the whole interval [a, b]). The middle diagram displays the waiting
times on the edges vwi resulting from the flow distribution at node v shown in Figure 19.
The bottommost diagram then shows the resulting functions Λk. The numbers 1 to 7
indicate the events occurring at node v during (a, b). E.g. at event 1 edge vw1 becomes
newly active and we can see that property (ii) holds here. We can also get an intuitive idea
from this diagram for why Claims 7 to 10 hold, e.g. Λ3 is convex between before event 6
(as stated in Claim 7) and the two phases where ∂Lv is minimal (between events 1 and 2
and events 6 and 7) are started by different edges becoming newly active (which is the
important consequence of Claim 9 we will use in the proof of Lemma 5.11).
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Claim 10. Let (a′, b′) ⊆ [a, b) be a subinterval such that ∂Lv is constant on (a′, b′). Then v is
responsible for at most 2K events during this interval.

Proof. We first observe that if an edge vwk changes from being active to being inactive at some point
θ during such an interval, then it will remain inactive after θ until at least b′. This follows from the
assumption that ∂Lv is constant, property (iii) and Claim 7.

Thus, there can be at mostK events at node v because an edge in δ+(v) becomes active. Furthermore,
if an event occurs because the queue of such an edge depletes, then this edge becomes inactive
immediately after. Hence, such events can occur at most K times as well. �

Combining Claims 9 and 10 now allows us to prove the lemma: Since the total inflow into node
v is constant during [a, b), Lemma 5.6 implies that ∂+Lv(θ) is uniquely determined by which edges
in δ+(v) are active at time θ and which have a non-empty queue. Thus, ∂+Lv(θ) can take at most
(2K − 1) · 2K ≤ 4K − 1 different values during this interval (note that at least one edge is always
active). Let α be the smallest such value. Then we can partition (a, b) into at most K subintervals
during which ∂+Lv is constantly α and at most K subintervals where ∂+Lv is strictly larger than α.
This is because if we have K maximal intervals with ∂+Lv ≡ α, then, according to Claim 9, there
must exist at least K different edges in δ+(v) which are always inactive between time a and the start
of the first of these intervals. But since there must always be at least one active edge, this implies
that a is the start of the first of these intervals.
Now, using the same argument for the second smallest value ∂+Lv can attain and each of the

at most K intervals where ∂+Lv is strictly larger than α, gives us at most K2 more intervals with
constant ∂+Lv as well as at most K2 remaining intervals with even larger value of ∂+Lv. Continuing
this way we find that (a, b) can be partitioned into at most

K +K2 + · · ·+K4K−1 ≤ K4K

subintervals of constant ∂−Lv. Finally, Claim 10 tells us that each of those intervals contains at most
2K events for which v is responsible. This gives us the desired bound.

As our next step we lift this bound on the number of events occurring at a single node to the whole
network using induction over a suitable chosen order of the nodes:

Lemma 5.12. Let N be a single-commodity network with strictly positive free flow travel times, (f, ξ)
a simple IDE, Ẽ ⊆ E some subset of edges and [a, b) ⊆ [0, ξ) a time interval satisfying the following
properties:

• All network inflow rates uv are constant during [a, b),

• all edge outflow rates f−e are constant during [a, b),

• E(θ) ⊆ Ẽ for all θ ∈ [a, b) and

• Ẽ is acyclic.

Then at most (2∆4∆+1)|V |−1 events occur during [a, b), where ∆ := max { |δ+(v)| | v ∈ V } denotes the
maximal out-degree in the network.

Proof. Since Ẽ is acyclic, we can choose a topological order v1 � v2 � · · · � vn in (V, Ẽ). We will
now show the claimed bound on the number of event via induction on this order. More precisely, we
show that for any ` ∈ [n] at most (2∆4∆+1)`−1 events occur during [a, b) at the nodes v1, . . . , v`:

Base Case (` = 1): As v1 is the last node in the topological order, it has no outgoing edges and,
therefore, cannot be responsible for any events during an interval with fixed inflow into this
node (except for maybe one event at the start of the interval).
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Induction Step (`→ `+ 1): We first note that, if v`+1 is a sink node, then no flow will ever enter
any edges leaving v`+1 since we do not have edges of zero travel time here. Thus, such a node
cannot be responsible for any events during (b, c) and the induction step becomes trivial. As the
same is true for nodes without outgoing edges, we can now restrict ourselves to the case where
v`+1 is a non-sink node with at least one outgoing edge.
For such a node we define Ẽv`+1

:= Ẽ ∩ δ+(v`+1) and observe that this set clearly contains all
outgoing edges from v`+1 which are active at any point during [a, b). Furthermore, for any such
edge vwk ∈ Ẽv`+1

the distance label Lwk can only have a break point at some time θ ∈ (a, b) if
an event occurs at a node on some active w, T -path at that time. As all those node are higher
in the topological order than v`+1 we know by induction that there are at most (2∆4∆+1)`−1

such times. Thus, we can subdivide [a, b) into at most (2∆4∆+1)`−1 subinterval such that for
each of those we can apply Lemma 5.11 in order to bound the number of events occurring at
v`+1 by 2∆4∆+1. In total, this gives us at most (2∆4∆+1) · (2∆4∆+1)`−1 = (2∆4∆+1)` events
occurring at nodes v1, . . . , v`+1 during [a, b).

Choosing ` = |V | now directly implies the lemma.

If we now want to apply this lemma to bound the number of events in a simple IDE, we still need to
find some set Ẽ which contains all active edges for as long a time as possible while also being acyclic.
Intuitively, a good choice for such a set should include all edges which are active or “close” to being
active at time a. Moreover, we want to define “closeness” here as wide as possible without risking to
include any cycles. The following lemma makes this idea into a formal definition and also provides us
with a lower bound for the length of the interval for which we can then use such a set:

Lemma 5.13. Let (f, ξ) be any partial Vickrey flow in a single-commodity network without cycles of
free flow travel time zero and without any dead-end nodes. Furthermore, let ε > 0 be some constant
such that we have

∑
e∈c τe ≥ |c|ε for all cycles c. Then for any time θ < ξ the set

Ẽ := { e = vw ∈ E | Lv(θ) > Ce(θ) + Lw(θ)− ε }

is acyclic. If, additionally, there exists some constant M ≥ 0 such that we have
∑
v∈V uv(ζ) ≤M for

all times ζ < ξ, then Ẽ contains all edges which are active at any point in time during the interval[
θ,min { θ + ε∑

e∈E νe+|E|+M
, ξ }

)
.

Proof. First, note that we have Lv(ζ) < ∞ for all v ∈ V and ζ ∈ R≥0 since there are no dead-end
nodes. Now, to show that Ẽ is acyclic take any cycle c in E. Then we have∑

e=vw∈c
(Lw(θ)− Lv(θ) + Ce(θ)) =

∑
e∈c

Ce(θ) ≥
∑
e∈c

τe ≥ |c|ε =
∑
e∈c

ε.

Thus, c must contain at least one edge e = vw with Lw(θ)− Lv(θ) + Ce(θ) ≥ ε and, therefore, e /∈ Ẽ.
This shows that Ẽ is acyclic.

For the second part of the lemma take any time ζ ∈ [θ,min { θ + ε∑
e′∈E νe′+|E|+M

, ξ }) and any

active edge e = vw ∈ E(ζ). We need to show that this edge is then also contained in Ẽ. For this let p
be an active v, T -path at time θ and p′ an active w, T -path at time ζ. Using Proposition 3.56 we now
get the following bounds:

Lv(θ) = Cp(θ) =
∑
e′∈p

Ce′(θ)
Prop. 3.56
≥

∑
e′∈p

Ce′(ζ)− (ζ − θ) ·
( ∑
e′∈E

νe′ +M
)

= Cp(ζ)− (ζ − θ) ·
( ∑
e′∈E

νe′ +M
)
≥ Lv(ζ)− (ζ − θ) ·

( ∑
e′∈E

νe′ +M
) (46)

and

Lw(ζ) = Cp′(ζ) =
∑
e′∈p′

Ce′(ζ)
Prop. 3.56
≥

∑
e′∈p′

Ce′(θ)− (ζ − θ) · |p′|
(∗)
≥ Lw(θ)− (ζ − θ) · (|E| − 1),

(47)
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where use at (∗) that w, T -path (like p′) cannot contain any cycles and, in particular, not any edge
leading towards w (like e). Together with Ce(ζ) ≥ Ce(θ)− (ζ − θ) (again from Proposition 3.56) this
now implies

Lv(θ)
(46)
≥ Lv(ζ)− (ζ − θ) ·

( ∑
e′∈E

νe′ +M
)

= Lw(ζ) + Ce(ζ)− (ζ − θ) ·
( ∑
e′∈E

νe′ +M
)

(47)
≥ Lw(θ)− (ζ − θ) · (|E| − 1) + Ce(θ)− (ζ − θ)− (ζ − θ) ·

( ∑
e′∈E

νe′ +M
)

= Lw(θ) + Ce(θ)− (ζ − θ) ·
( ∑
e′∈E

(νe′ + 1) +M
)

> Lw(θ) + Ce(θ)−
ε∑

e′∈E νe′ + |E|+M
·
( ∑
e′∈E

(νe′ + 1) +M
)

= Lw(θ) + Ce(θ)− ε.

Hence, we have e ∈ Ẽ.

By combining Lemmas 5.12 and 5.13 we can now finally show that in single-commodity networks
without edges with free flow time zero only finitely many events occur during any finite time interval
of a simple IDE.

Theorem 5.14. Let N be a feasible single-commodity network with right-constant network inflow
rates with R discontinuities and strictly positive free flow travel times. Then the number of events in
any simple IDE (f, ξ) with ξ <∞ is bounded by

O

(2 ·
(

2∆4∆+1)
)|V |)⌈

ξ·
∑
e∈E νe+|E|+M

τmin

⌉
+R
 ,

where τmin := min { τe | e ∈ E } > 0 is the shortest free flow travel time, ∆ := max { |δ+(v)| | v ∈ V }
the maximal out-degree and M := max {

∑
v∈V uv(θ) | θ < ξ } ≥ 0 some constant bounding the sum of

all network inflow rates at all times before ξ.

Proof. We first note that we can assume without loss of generality that N does not contain any
dead-end nodes: Since no IDE flow could reach such a node anyway (see Proposition 3.66), we can
just remove them without changing the IDE in this network.
We now partition [0, ξ) into K :=

⌈
ξ ·

∑
e∈E(νe+1)+M

τmin

⌉
+ R subintervals [a0, a1), [a1, a2), . . . ,

[aK−1, aK) of length at most τmin∑
e′∈E(νe′+1)+M such that during each such subinterval all network inflow

rates are constant. We will now inductively show that for any k ∈ { 0, . . . ,K } the number of events
before ak is at most (2 · (2∆4∆+1)|V |)k.

Base Case (k = 0): Since no event can occur before a0 = 0, the bound trivially holds here.

Induction Step (k→ k + 1): Since [ak, ak+1) has length at most τmin the edge outflow rates during
this interval are completely determined by the edge inflow rates before time ak (cf. Corollary 3.21).
By induction and the assumption that (f, ξ) is simple, those have at most (2 · (2∆4∆+1)|V |)k

discontinuities. Thus, the edge outflow rates have at most twice this number of discontinuities
by Proposition 3.22 and we can further subdivide [ak, ak+1) into at most 2 · (2 · (2∆4∆+1)|V |)k

intervals with constant edge outflow rates. Additionally, for each such interval [b, c) we know
from Lemma 5.13 that the set Ẽ := { e = vw ∈ E | Lv(b) > Ce(b) + Lw − τmin } is acyclic and
contains all active edges during this interval.

Thus, we can apply Lemma 5.12 to each of those subintervals [b, c) and show that for each of those
at most 2 · (2 · (2∆4∆+1))|V |)k subintervals in our partition of [ak, ak+1) at most (2∆4∆+1)|V |−1

events occur anywhere in the whole network. This, now, gives us the desired bound of at most

(2 · (2∆4∆+1))|V |)k + 2 · (2 · (2∆4∆+1))|V |)k · (2∆4∆+1)|V |−1
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≤ 2 · (2 · (2∆4∆+1))|V |)k · (2∆4∆+1)|V | = (2 · (2∆4∆+1))|V |)k+1

events before ak+1.

Finally, choosing k =
⌈
ξ ·

∑
e∈E(νe+1)+M

τmin

⌉
+R gives us the bound stated in the theorem.

Remark 5.15. If the network N itself is already acyclic, we do not need Lemma 5.13 in the above
proof and, thus, can start with a partition of [0, ξ) into “only” K :=

⌈
ξ

τmin

⌉
+R subintervals of length

at most τmin. This then leads to a slightly better bound of

O
((

2 · (2∆4∆+1))|V |
)⌈ ξ

τmin

⌉
+R
)
.

Corollary 5.16. Let N be a feasible single-commodity network with right-constant network inflow
rates with R discontinuities and strictly positive free flow travel times. Then, for any given time
horizon T ≥ 0 Algorithm 3 computes an IDE until T and has a worst case runtime of

O
((

2 · (2∆4∆+1))|V |
)⌈T ·∑e∈E νe+|E|+M

τmin

⌉
+R · |E|2

)
,

where ∆, τmin and M are defined as in Theorem 5.14.

Proof. According to Lemma 5.10 Algorithm 3 computes a simple IDE. Thus, we can apply Theorem 5.14
to bound the number of events and, consequentially, the number of extension steps performed by the
algorithm to obtain this partial IDE. Furthermore, according to Proposition 5.5 we can use Algorithm 2
to compute each individual extension in O(|E|2).

5.2.2. Lower Bounds

In the previous subsection we saw that in single-commodity networks with non-zero free flow travel
times, there always exists an IDE with a finite number of phases (for any finite time horizon). The
following example shows that at least one of these two assumptions is necessary, i.e. the existence of
simple IDE is not guaranteed any more for multi-commodity networks with zero free flow travel times:

s

12 · 1[0,1) + 3 · 1[1,∞)

3 · 1[1,∞)

9 · 1[0,1)

t1

t2

t3

(0,
6)

(1, 2)

(0, 3) (1,
3)

Figure 21: A multi-commodity network in which there exists no simple IDE until any time > 5. The
edge labels on the edges denote free flow travel time and capacity in the form (τe, νe). In
particular, the dotted edges are zero free flow travel time edges.

Example 5.17. Consider the network depicted in Figure 21. It has three commodities which share a
common source node s and each have a single sink node. The source node is directly connected to the
sink nodes of commodities 1 (blue) and 3 (green) via edges of free flow travel time zero and capacities
6 and 3, respectively. The sink node of commodity 2 (red) is reachable from both these sink nodes
via an additional edge with free flow time 1 and capacities 2 and 3, respectively. This means that
particles of the blue and the green commodity each only have one single path while particles of the red
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commodity may choose between two different paths. When the first of these particles start to enter
the network at time θ = 1 the particles of the other two commodities already build up queues on the
two edges st1 and st2 (see Figure 22 for a visual representation). Both queues have the same length
(6), but the capacity of edge st1 is large and so the current travel time along the upper s, t2-path is
strictly shorter than along the bottom one. Thus, at first all red particles enter the upper path leading
to the waiting time on edge st1 to stay constant while the waiting time on edge st3 starts to decrease.
At time θ = 2 then, both paths have the same current travel time. At the same time the first red
particles arrive at node t1 and start to form a queue on edge t1t2. This has the effect that for the
next phase all red particles have to choose the lower path. This lasts until time θ = 3 at which point
the last red particles arrive at node t1 and, hence, the queue on edge t1t2 starts to decrease again.
Because of this, the red particles may now only use the upper path again. This pattern of switching
between the two paths now continues, however, with ever shorter length of the two types of phases:
The next switches happen at times 3.5 and 4, the ones after that at times 4.25 and 4.5 and so on.
Thus, the unique IDE in this network exhibits the following flow pattern:

f+
st1

Qst1

f+
t1t2

Qt1t2

f+
st3

Qt3t2

f+
t3t2

θ = 0 1 2 3 3.5 4
4.25

4.5
4.75

5

νst1 = 6

νt1t2 = 2

νst3 = 3

νt3t2 = 3

12

3
3 3 3 3 . . .

6 6

3 3
1.5 0.75

3 3 3 3 . . .

1 0.5 0.25

9
3 3 3 3 . . . 3

6

3 3
1.5 1.5 0.75

3

In this diagram the height of the rectangles (as well as the numbers inside of them) indicate the inflow
rates into the respective edges (with the colours corresponding to the respective commodities) and the
height of the graphs for the queues denote their length at any time. The horizontal dashed lines show
the capacity of each edge, i.e. whenever the combined inflow rates exceed such a line, the queue on
the respective edge grows.

We can now see that this IDE requires an infinite number of phases to reach time θ = 5, i.e. it has
a Zeno-event at time θ = 5.
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This example immediately implies the following theorem:

Theorem 5.18. There exists an acyclic multi-commodity network with edges of free flow travel time
zero in which every IDE until a certain time ξ <∞ requires an infinite number of phases. In particular,
we cannot use an extension based approach like Algorithm 1 to compute IDE until any time horizon
T ≥ ξ in this network.

As shown in the previous section, this kind of Zeno-type behaviour is not possible in single-commodity
networks without zero free flow travel time edges. However, individual phases might still become
arbitrarily small over time even in very simple networks:

Example 5.19. Consider the network depicted in Figure 23 with a single source node s with a
constant, infinitely lasting inflow rate of 2. There are two paths from the source s to the sink t: The
upper one via node v with a free flow travel time 2 and the lower one via nodes w and x with a free
flow travel time of 3. Both start with an edge with capacity 2 which is followed by an edge of capacity
1. Hence, in the empty network at time θ = 0 only the upper path is active and all flow has to take
this path (see Figure 24 for a visual depiction). Beginning with time θ = 1 this flow enters the second
edge vt of the upper path resulting in a queue forming on this edge. By time θ = 2 this queue reaches
length 1 and, thus, the lower path becomes active while the upper one becomes inactive immediately
after as the queue on edge vt continues to grow because of the particles already on the upper path’s
first edge sv. Consequently, after time θ = 2 all particles have to use the lower path. At time θ = 3 a
new queue begins to grow on edge wx while at the same time the last particles from edge sv arrive at
node v and, thus, the queue on edge vt starts to deplete after that. By time θ = 3.5 those queues
reach a length of 0.5 and 1.5, respectively, making the upper path active again while the lower path
becomes inactive immediately after. This pattern of switching active paths continues forever, i.e. the
unique IDE during the initial interval [0, 3.5] can be described as follows

f+
sv

f+
vt

Qvt

f+
sw

f+
wx

Qwx

f+
xt

0θ = 1 2 3 3.5 = 4 · 1 + 2−1 − 1

νsv = 2

νvt = 1

νsw = 2

νwx = 1

νxt = 1

2 2

2

2 1.5

2

2

0.5

and for every interval [4k + 2−k − 1, 4(k + 1) + 2−(k+1) − 1] with k ∈ N∗ after that by:
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Figure 22: The first six events in the network from Figure 21. Note, that the picture is slightly
misleading insofar as the dashed edges should have a physical length of zero. In particular,
there is never any proper volume of flow on such an edge (only flow waiting in its queue).
The flow shown in the pictures on these edges is, therefore, only meant to indicate at which
rate flow will pass through this edge during the next phase but should be seen has having
measure zero right now.
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Figure 25 shows the resulting queue length functions on the edges vt and wx as well as the current
travel times of the two paths for the times between 0 and 15. Figure 24 depicts snapshots of this IDE
between times 0.5 and 7.5.

s2

v

w x

t

Figure 23: A single-commodity network which can create arbitrarily short extension phases. All free
flow travel times are 1. The capacities of the thick edges sv and sw are 2 while all other
capacities are 1.

This example directly implies several negative results on IDE: Over time, extension phases can
become arbitrarily small, the number of necessary extension phases can be large compared to the
size of the instance and it is not guaranteed that an IDE ever reaches a steady state where, following
[CCO22a] we say that a dynamic flow reaches a steady state if all queue lengths (and, consequently,
all current travel times) remain constant forever after a certain point in time. Additionally, we also
define the weaker notion of a periodic state wherein queues may still change but only in a periodic way.
Both kinds of states are of interest for computing flows as, if such a state is reached (and detected),
one can stop the computation and still know the complete flow, i.e. one can compute an IDE for all
times by only computing it for some finite time.

Definition 5.20. Let f be a dynamic flow. We say that f reaches
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Figure 24: Snapshots of the unique IDE flow in the network depicted in Figure 23.
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Figure 25: Queue lengths on edges vt and wx (top) and current travel times on the paths sv, vt and
sw,wx, xt, respectively (bottom).

• a steady state if there exists some time ξ such that we have Qe(θ) = Qe(ξ) for times θ ≥ ξ
and all edges e ∈ E.

• a periodic state if there exists some time ξ and a periodicity π ∈ R≥0 such that we have
Qe(θ + kπ) = Qe(θ) for times θ ≥ ξ, all k ∈ N0 and all edges e ∈ E.

Note that a steady state is, in particular, also a periodic state (with arbitrary periodicity).

Theorem 5.21. Considering only single-commodity networks with constant network inflow rates and
strictly positive, integer capacities and free flow travel times. Then the following statements are true:

a) There exists no general non-trivial lower bound for the length of the required extension phases in
this network depending only on capacities and free flow travel times.

b) There exists a network where the number of extensions required to reach an IDE up to any given
time horizon T > is in Ω(T ).

c) There exists a network wherein no IDE ever reaches a periodic steady state even though the
minimal cut has higher capacity than the network inflow rate.

d) The worst case output complexity of any algorithm computing IDE in such network is not
polynomially bounded in the encoding size of the instances – even if we allow the algorithm to
use simple periodicity to reduce the size of the output.

Proof. The network from Example 5.19 clearly exhibits the first two properties. For the third property,
we add an edge st with free flow travel time ≥ 5 and any capacity > 0 to this network. Since the
current travel time along both path sv, vt and sw,wx, xt never reaches 5 this does not change the
unique IDE in the instance (which clearly never reaches a periodic state). The fourth property follows
directly from the second one as the phases in the unique IDE in this network are all different and,
thus, we the output has to explicitly describe each of them individually.
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Remark 5.22. The third property is not true for dynamic equilibria in the full information setting
since such equilibrium flows are guaranteed to reach a steady state (under the same assumptions on
the network) by [CCO22a, Theorem 3]. The other three properties are, to our knowledge, still open
questions in this model.

5.3. NP-Hardness of IDE-Decision Problems
While we have shown in Sections 5.1 and 5.2 that in single-commodity networks we can, in principle,
always compute IDE with Algorithm 1, the runtime bound provided in Corollary 5.16 is very large
(and, in particular, superpolynomial). Partly, the fault for this large bound certainly lies in the rather
rough estimates used in the proof of this result and it seems unlikely that there exists any instance
where such a runtime is actually achieved. On the other hand. Theorem 5.21 already suggests that at
least a polynomial time algorithm for computing IDE is unlikely to exist as even just writing down a
complete IDE (in a non-compressed way) requires superpolynomial space (and, therefore, time).
An even stronger result in this direction would be to show that computing IDE is (in some sense)

NP-hard. To do that, we first have to formalize a corresponding decision problem. The natural
problem would be

IDE Existence:

Input: A feasible single-commodity network N with right-constant network inflow rates

Question: Does there exist an IDE in N ?

However, this is actually a trivial problem: The answer is always “yes” since we have shown in
Chapter 4 that IDE are always guaranteed to exist (cf. Theorem 4.36). This situation is quite
reminiscent of that for (mixed) Nash equilibria in finite game: Existence of mixed Nash equilibria
is guaranteed by a famous theorem by Nash ([Nas51, Theorem 1]) and proven using a fixed point
theorem. However, all known algorithms for computing such equilibria have superpolynomial worst
case runtime. Thus, to show that this problem is hard (and, hereby, justifying the large worst case
runtimes) one has to go different ways: One way is to introduce a new complexity class and show that
a) it contains other problems assumed to be hard and b) that the given problem is a hard problem
within this class. For the problem of finding mixed Nash equilibria this has been done by [DGP10]
with the class PPAD (cf. [DGP10, Theorem 6.1]). Another way is to create other, non-trivial decision
problems by not just asking for the existence of any equilibrium, but equilibria with certain additional
properties (e.g. a Nash equilibrium where a certain strategy is used or which achieves a certain social
welfare – cf. [CS03]). We refer to [NRTV07, Chapter 2] for a nice introduction to the topic of the
complexity of computing Nash equilibria.
For thin flows in the full information setting Cominetti, Correa and Larré argue in [CCL15, p.

27] that because their existence can be shown using Kakutani’s fixed point theorem (which itself is
PPAD-complete according to [Pap94, p. 526], [PVZ23, Theorem 3.17, Lemma 3.18]), the problem of
finding those thin flows is also contained in PPAD. Thus, the same should be true for IDE-thin flows
by the proof of Lemma 4.29. Note, however, that giving a formal proof for either ot these two claims
is by no means straightforward – see [Mar20, Abschnitt 5.2.2] for a discussion of the problems arising
thereby for the case of the full information setting.

We will now, instead, follow the second approach and adapt it to our setting. Namely, we will show
that all of the following problems are NP-hard:

SC-IDE without given edge:

Input: A single-commodity network N with right-constant network inflow rates and an edge e in
the network

Question: Does there exist an IDE in N not using edge e?

118



SC-IDE with given edge:

Input: A single-commodity network N with right-constant network inflow rates, an edge e in the
network and a constant L > 0

Question: Does there exist an IDE in N such that at some time θ we have F∆
e (θ) ≥ L?

SC-IDE terminating:

Input: A single-commodity network N with right-constant network inflow rates with bounded
support and some time horizon T > 0

Question: Does there exist an IDE in N terminating before time T?

SC-IDE with few phases:

Input: A single-commodity network N with right-constant network inflow rates and some number
L ∈ N0

Question: Does there exist an IDE in N with at most L phases?

We will show NP-hardness of these problems by reducing the NP-complete problem 3Sat to them.

Proof idea: Since the main part of the reduction will be the same for all these problems, we start
by explaining this part: The goal here is to construct for any given 3Sat-formula Φ a network
NΦ which has the following property: There exists some special indicator edge ê in NΦ such
that every satisfying interpretation of Φ can be translated into an IDE flow not using edge ê
and every IDE flow not using this edge can be translated into a satisfying interpretation of Φ.
This construction directly proves that IDE without given edge is NP-hard. For the rest we
can use the indicator edge as an inflow switch for a source node s̃ in another network Ñ : If the
indicator edge is not used by NΦ it can be used for flow normally entering Ñ at s̃ to bypass the
whole network. If, however, the indicator edge is used by NΦ, a queue builds up on this edge
forcing the flow to use the network as usual (see Figure 26 for a schematic overview).

We now start the formal proof by constructing the network NΦ:

Lemma 5.23. There exists a mapping Φ 7→ (NΦ, ê) between 3Sat-formulas and feasible networks
with a special edge ê satisfying the following properties:

a) (NΦ, ê) can be constructed from Φ in polynomial time (in the length of Φ).

b) For every formula Φ the network NΦ is an acyclic single-commodity network with constant,
finitely lasting network inflow rates and non-zero integer free flow times and capacities.

c) If Φ is satisfiable, then there exists an IDE in NΦ not using edge ê. Additionally, this IDE can
be chosen such that it has at most 9K + 6 phases and a termination time of at most 9K + 6
where K is the number of clauses in Φ.

d) If Φ is not satisfiable, then every IDE in NΦ sends flow of volume at least 1 into edge ê between
times 7 and 8.

e) Changing the capacity of edge ê or any edge between ê and the sink node t of NΦ and/or putting
additional flow on any of those edges after time 6 does not change properties c) and d).

Proof. Let Φ = c1 ∧ c2 ∧ · · · ∧ cK be a 3Sat-formula using variables x1, . . . , xN . We then construct NΦ

using two types of gadgets: K clause gadgets (one for each clause in Φ) and N variable gadgets (one
for every variable in Φ). We will first describe them separately and then explain how to connect them:
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Figure 26: A schematic overview of the type of network we will construct to show NP-hardness of
several decision problems involving IDE. The right part (NΦ) will be the same for each of
those problems and we describe its construction in the proof Lemma 5.23. The left side
(Ñ ) will be chosen differently for each of the different decision problems.

A clause gadget C (cf. Figure 27 (left)) consists of a source node s with a network inflow rate
us ≡ 9 · 1[0,1], three more nodes v1, v2, v3 and three edges sv1, sv2, sv3 each with a free flow travel
time of 1 and a capacity of 9. We will embed this gadget into a larger feasible network in such a way
that there are no incoming edges into C and exactly one outgoing edge from each of the three nodes
v`. Furthermore, we will ensure that there is a shortest v`, T -path from each of those nodes with equal
free flow travel time and which in every IDE has no flow on it until at least time θ = 1.

Claim 11. Let C be a clause gadget correctly embedded into a larger feasible network N with locally
p-integrable network inflow rates for some p > 1. Then the following two properties hold:

(i) In every IDE there is at least one edge sv` with F−sv`(2) ≥ 3.

(ii) For every set of non-negative measurable functions f+
sv1
, f+
sv2
, f+
sv3

with
∑
` f

+
sv`
≡ us, there exists

an IDE with those functions as the edge inflow rates in C.

Proof. Property (i) follows immediately from the observation that due to strong flow conservation we
must have F+

sv`
(1) ≥ 9

3 for at least one of the three edges. As the capacities on those edges are large
enough such that no queue can ever form there, this directly implies F−sv`(2) = F+

sv`
(1) ≥ 3.

For property (ii) let (f, 1) be some partial IDE in N (which exists by Theorem 4.15). Since there
are no edges leading into C, the edge inflow rates on the edges sv` inside gadget C does not affect
whether or not (f, 1) is an IDE in the remaining network. Furthermore, our assumption on the correct
embedding of C guarantees that all three edges are active during [0, 1]. Thus, we can change the edge
inflow rates on these edges in any way we want and obtain a new partial IDE (f ′, 1). Extending this
to an IDE for all times (which is always possible according to Theorem 4.15) gives us an IDE in N
with the desired flow rates on the edges in C. �

A variable gadget X (cf. Figure 28 (left)) consists of two input nodes x and x̄, a mixing node y
and two output nodes z and ẑ which are connected as follows: there are three edges xy, x̄y and yz
with free flow travel times 1 and capacities 1 as well as an edge yẑ with free flow travel time 1 and
capacity 2. We will embed this gadget in a larger network in such a way that the only incoming edges
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Figure 27: Left side: The clause gadget C. The dashed edges as well as node t are not part of the
gadget and only indicate how to embed C into a larger network. Right side: A possible
flow in C. When translating this flow to an interpretation of the given 3Sat-formula we
would interpret the first two literals of the corresponding clause to be true.

connect to the input nodes x and x̄ and the only outgoing edges start at the output nodes z and ẑ.
Moreover, there is a shortest z, T -path pz and a shortest ẑ, T -path pẑ such that the free flow travel
time along pẑ is exactly one more than that along pz and in every IDE there is never any queue on
path pz and on path pẑ there is never any queue before time 6.

Claim 12. Let X be a clause gadget correctly embedded into a larger network N and f any IDE in
this network.

(iii) If no flow ever arrives at either node x or x̄, then no flow will ever use edge yẑ.

(iv) If a flow volume of at least 3 arrives at each of the two input nodes during [2, 3], then the edge
inflow rate into edge yẑ is at least 1 almost everywhere during [5, 6].

(v) If no flow enters the gadget before time 2, then no flow leaves edge yẑ before time 5. This is
true even without the embedding-assumption that there are no queues on path pẑ before time 6.

Proof. If flow only ever enters the gadget over node x, this flow arrives at node y at a rate of at most
1 (since νxy = 1). Thus, no queue can ever form on edge yz. As there is also never a queue on path
pz while path pẑ is strictly longer, yz will always be the only active edge starting at y. Therefore,
no flow ever enters edge yẑ. Exactly the same is true if flow only ever enters the gadget via node x̄.
Thus, property (iii) is satisfied.

If, on the other hand, at each node a flow volume of at least 3 arrives during [2, 3], both edges xy
and x̄y have a queue of length at least 2 by time θ = 3. Since the queues operate at capacity, this
implies that each of the edges has an outflow rate of 1 during [4, 6]. As long as the queue on edge yz is
smaller than 1 all this flow enters this edge (as it is the only active one then). Once the queue length
reaches 1 (which happens by time 5 at the latest), edge yẑ becomes active as well. Whenever this is
the case, flow can enter edge yz at a rate of at most 1 (to keep the queue from growing any further)
and the rest enters edge yẑ. In particular, during [5, 6] the queue on edge yz will always have a length
of 1 and the flow arriving at a rate of 2 at node y must split equally between the two edges (note that
no queue can ever forms on edge yẑ and no queue exists on path pẑ until at least time θ = 6 by our
assumptions). Thus, property (iv) holds as well. An example for such a flow is depicted in Figure 28
(right).
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Figure 28: Left side: The variable gadget X. The dashed edges as well as node t are not part of X and
only indicate how to embed this gadget into a larger network. Right side: A prototypical
example of an IDE where flow of volume at least 3 entered the variable gadget through
each of the two input nodes during the time interval [2, 3].

Finally, for property (v) we once more use the observation that flow may only enter edge yẑ if there
is a queue of length at least 1 on edge yz. Under the assumption that no flow enters the network
before time 2 this cannot be the case before time 4 as the inflow into node y can then only start at
time 3 and be at a rate of at most 2. Thus, flow cannot enter edge yẑ before time 4 and, hence, not
leave it before time 5. �

We now construct the whole network Φ as follows (cf. Figure 29): We take one copy of the clause
gadget C for every clause of Φ and one copy of the variable gadget X for every variable in Φ and
connect them as follows: If the `-th literal in some clause c of Φ is a positive variable x we connect
node v` in the clause gadget corresponding to c to node x in the variable gadget corresponding to the
variable x. If the `-th literal is a negated variable ¬x we connect to the node x̄ in the corresponding
variable gadget instead. In both cases the connecting edge has a free flow travel time of 1 and a
capacity of 9. Next, we add three more nodes a, b and t and declare t the only sink node in this
network. Furthermore, we add an edge zt with free flow time 1 and capacity 1 as well as an edge ẑa
of free flow time 1 and capacity 2 from every variable gadget. Finally we add an edge ê := ab and an
edge bt, both with free flow time 1 and capacity 1.
This construction is clearly possible in polynomial time, i.e. the mapping Φ 7→ (NΦ, ê) satisfies a).

It is also obvious that the network NΦ satisfies all the properties in b). So, it remains for us to show
that properties c) and d) are satisfied as well. For this, we first observe that both types of gadgets
are embedded into NΦ in such a way as to satisfy the assumptions of Claims 11 and 12: For every
node v` in any of the clause gadgets the unique physically shortest v`, t-path is either a path of the
form v`x, xy, yz, zt or v`x̄, x̄y, yz, zt (depending on whether the `-th literal in the corresponding clause
is positive or negative). All these paths have the same free flow travel time (namely, 5). Since the
only nodes with positive network inflow are the nodes s in the clause gadgets, there can be no flow
outside these gadgets before time θ = 1. So, the clause gadgets are correctly embedded in the network.
The shortest z, t-path for any variable gadget is just the edge zt (with free flow time 2) while the
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Figure 29: The complete network NΦ for a 3Sat-formula consisting of K clauses in N variables.

shortest ẑ, t-path is ẑa, ab, bt (with free flow time 3). Furthermore, the capacities of edges zt, yẑ and
ẑa guarantee that no queue ever forms on them. Finally, no flow can reach edge ab or bt before time
θ = 6 by property (v) and, thus, no queue can form on those edges before time 6. Thus, the gadgets X
are correctly embedded as well. Note, that changing the capacity of edge ê = ab or edge bt or putting
additional flow on them after time 6 does not change any of this. Hence, property e) holds as well.
Using Claims 11 and 12 we can now show that NΦ satisfies properties c) and d):

1. Case: Φ satisfiable: Let β : {x1, . . . , xN } → {True,False } be a satisfying interpretation of
Φ. Then, we can choose for every clause of Φ one literal which is true under β. According to
Claim 11(ii) there exists then an IDE f in NΦ wherein in every clause gadget we only send flow
towards the node v` corresponding to the chosen literal in this clause. This then implies that in
every variable gadget flow only arrives either at node x or at node x̄. Thus, by Claim 12(iii) no
flow will ever use any of the edges yẑ and, therefore, no flow will ever arrive at node a. Hence,
edge ê will always be empty in f .
For the bound on the termination time we note that the total flow volume ever in the network
is 9K. If, in the worst case, all this flow goes through a single input node x or x̄, then the last
particle arriving there at time θ = 3 would have a waiting time of 9K − 1. Together with the
free flow travel time of 4 for the remaining path xy, yz, zt, this means the last particle will
arrive at t at time 3 + 9K − 1 + 4 = 9K + 6. The bound on the number of phases now follows
by observing that in the flow constructed above events only happen at integer times.

2. Case: Φ unsatisfiable: Let f be any IDE in N . If there is a variable gadget with flow of volume
at least 3 arriving at each of its two input nodes during [2, 3], then a flow of volume at least
1 will leave this gadget at node ẑ during [6, 7] by Claim 12(iv). This flow will then enter
edge ê during [7, 8]. If, on the other hand, there were no such variable gadget, then we could
construct a satisfying interpretation of Φ as follows (which is then a contradiction to Φ being
unsatisfiable): For any variable x set β(x) := True if if the total inflow into node x is at least
3 and β(x) := False if the total inflow into x̄ is at least 3. If neither of those is the case, we
may choose any interpretation for the variable x. This interpretation now satisfies Φ since,
according to Claim 11(i), for every clause the corresponding gadget has at least one node v`
which receives a flow of at least 3 which then enters the corresponding variable gadget. Thus,
the literal corresponding to this node v` is true under β.
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With this lemma we now immediately get NP-hardness of SC-IDE without given edge. For the
reductions to the other problems we need one additional construction: Namely, we want to use NΦ as
a switch for the network inflow in another network Ñ , i.e. construct a new network ÑΦ in which there
exists an IDE where a certain part of the flow completely bypasses Ñ if and only if Φ is satisfiable.

Lemma 5.24. Let Ñ be a single-commodity network where all network inflow rates are zero before
time θ = 8+M for some M ∈ N0, there is no network inflow at any sink node and s̃ is a source node in
Ñ such that the network inflow rate ũs̃ at s̃ is bounded and has its essential support in [8 +M, 8 + 2M ].
Then there is a mapping Φ 7→ ÑΦ between 3Sat-formulas and feasible networks containing Ñ as
subnetwork satisfying the following properties:

a) ÑΦ can be constructed from Φ in polynomial time (in the length of Φ).

b) If Ñ is acyclic, has non-zero integer free flow travel times and/or capacities, then the same
holds for ÑΦ.

c) If Φ is satisfiable, then there exists an IDE in ÑΦ such that its restriction to Ñ is an IDE where
ũs̃ has been replaced by the zero function. If s̃ was the only node with positive network inflow in
Ñ then the IDE in ÑΦ can be chosen such that

• it has a termination time of at most max { 9K + 6, 9 + 2M + τ̃pmin }, where τ̃pmin is the free
flow travel time along a physically shortest s̃, T -path in Ñ and K the number of clauses in
Φ.

• it has at most 9K + 16 phases if, additionally, ũs̃ is constant during [8 +M, 8 + 2M ].

d) If Φ is not satisfiable, then every IDE in ÑΦ restricted to Ñ is an IDE in this subnetwork.

Proof. Given a 3Sat-formula Φ we construct ÑΦ as follows (cf. Figure 30): Let B ∈ N∗ be some
bound on the network inflow rate ũs̃ at s̃ in Ñ , τ̃pmin

:= min {
∑
e∈p | p a s̃, T -path in Ñ } the free

flow travel time along a physically shortest s̃, T -path in Ñ and assume without loss of generality that
τ̃pmin

≥ 2, which is also the free flow travel time along a physically shortest a, t-path in NΦ.
We take the (disjoint) union of the networks Ñ and NΦ and add two extra nodes s′ and t′. We

connect s′ to s̃ in Ñ and a in NΦ with edges of travel time M and capacity B. Furthermore we add an
edge t̃t′ with free flow travel time 1 and capacity

∑
e∈δ−(t̃) νe for every sink node t̃ in Ñ and an edge

tt′ with free flow travel time τ̃pmin
− 1 and capacity

∑
e∈δ−(t) νe for the sink node t in NΦ. Finally, we

change the capacities of ê = ab and bt in NΦ to B, the network inflow rates at s̃ in Ñ to zero, at a in
NΦ to B · 1[6,M+8] and at s′ to ũs̃(_−M).

Now, we observe that since the only changes made to NΦ are moving the sink further away, changing
the capacity of edges ê and bt and adding additional flow to these edges after time 6, the IDE flows in
NΦ still exhibit the same properties as in Lemma 5.23. Furthermore, the capacities of the new edges
are chosen such that no queue can ever form on them while the free flow travel times are chosen such
that without any queues the edges s′s̃ and s′a are both active.

Therefore, if Φ is satisfiable, then according to Lemma 5.23c) there exists an IDE such that the only
flow from NΦ entering ê is the one entering the network at node a. Thus, the queue on ê is empty until
at least time M and edge s′a is active throughout this period. Hence we can send all network inflow at
node s′ along this edge, hereby bypassing network Ñ . As this flow will not encounter any queues on its
way, its last particle has reached the sink node t′ by time θ = 8+M+M+1+1+τ̃pmin

−1 = 9+2M+τ̃pmin
,

which, together with the bound in Lemma 5.23c), gives us the desired bound on the termination time
for the case where there are no other nodes with positive network inflow in Ñ . If, additionally, ũs̃ is
constant, then the bypassing flow is responsible for at most 2 events on each of the 5 nodes on its
path. Together with the bound in Lemma 5.23c) this again gives us the desired bound.
If, on the other hand, Φ is unsatisfiable, we know from Lemma 5.23d) that a queue of length at

least 1 will have formed on edge ê by time 8 and remain there until at least time 8 +M . Since no flow
enters network Ñ before time 8 +M , this means edge s′a will be inactive throughout [8, 8 +M ] and
all network inflow at node s′ has to travel along edge s′s̃. Thus, this flow enters Ñ in exactly the
same way as described by ũs̃.
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Figure 30: The network ÑΦ constructed in Lemma 5.24 for a given network Ñ and a 3Sat-formula
Φ. Capacities of ∞ denote capacities chosen in such a way as to guarantee no queue ever
forms on these edges, i.e. at least the sum of the capacities of all edges leading into the
respective edge.

Hence, ÑΦ satisfies both properties c) and d). Properties a) and b) are directly clear from the
construction.

Theorem 5.25. The problems SC-IDE without given edge, SC-IDE with given edge, SC-IDE
terminating and SC-IDE with few phases are all NP-hard.

SC-IDE with few phases is NP-complete when restricted to instances where K is polynomially
bounded in the size of N .

All this remains true even when restricted to only acyclic networks with strictly positive, integer free
flow travel times and capacities.

Proof. NP-hardness of IDE without given edge follows directly from Lemma 5.23 and the NP-
hardness of 3Sat (Proposition 2.73) as NΦ has an IDE not using edge ê if and only if Φ is satisfiable.
For IDE with given edge we use Lemma 5.24 with a network Ñ consisting of a single edge s̃t̃

and a network inflow rate of ũs̃ := 1[8+M,8+2M ]. Then, we can send all network inflow at node s′ in
ÑΦ into edge s′a (hereby having F∆

s′a(8 +M) = M) if and only if Φ is satisfiable.
For IDE terminating we use Lemma 5.24 with a network ÑK consisting of a single edge s̃t̃ with

free flow travel time 1 and capacity 1 and a network inflow rate of ũs̃ := (9K + 6) · 1[8+1,8+2] and
choose T := 9K+7. Then, we can bypass Ñ and achieve a termination time of max { 9K + 6, 12 } ≤ T
if Φ is satisfiable, while having to send all network inflow at node s′ through Ñ and get a termination
time of 9 + 9K + 5 + 2 > T , otherwise.

Finally, for IDE with few phases we use Lemma 5.24 and the network from Example 5.19 with
inflow rate 2 · 1[3K+11,6K+15) as Ñ and choose L = 9K + 16. Then, we get an IDE flow with at most
9K + 16 = L phases by bypassing Ñ if Φ is satisfiable. If, on the other hand, Φ is unsatisfiable, then
any IDE in Ñ has at least 4 · (3K + 4) = 12K + 16 > L phases.

125



If K is polynomially bounded in the length of Φ, then IDE with few phases becomes NP-
complete as the IDE flow corresponding to a satisfying interpretation can be described (and checked)
in polynomial size (and time) in the number of its phases.

Clearly, many more decision problems involving IDE can be shown to be NP-hard using the same
approach as in the above proof. Essentially, every property for which the following two assumption
hold, can be used to create such an NP-hard decision problem:

• The IDE in NΦ corresponding to a satisfying interpretation of Φ has this property.

• There exists a feasible network wherein no IDE has this property.

As a final remark we want to mention that the switch-construction in the proof of Lemma 5.24
clearly also works for multi-commodity networks. Thus, the following decision problems can easily be
shown to be NP-hard as well:

MC-IDE with finitely many phases:

Input: A multi-commodity network N with right-constant network inflow rates with bounded
support

Question: Does there exist an IDE in N with finitely many phases?

MC-IDE eventually terminating:

Input: A multi-commodity network N with right-constant network inflow rates with bounded
support

Question: Does there exist an IDE in N which eventually terminates?

For MC-IDE with finitely many phases we can use the network from Example 5.17 as Ñ while
for MC-IDE eventually terminating we can use the network we will use in the following chapter
to prove that multi-commodity networks are not guaranteed to terminate (Theorem 6.18).

5.4. Bibliographic Notes and Open Questions
The results of this chapter are mostly based on joint work with Tobias Harks published in [GH23]. The
possibility of computing IDE-thin flows for multi-commodity networks without edges of free flow travel
time zero using a MIP was already observed by our coauthor Leon Sering in [GHS20, Section 5.1]. A
first result for bounding the number of phases in an IDE was obtained by Kraus in his master’s thesis
for a certain subclass of series parallel graphs ([Kra20, Corollary 2.12]). His proof already highlighted
how one can show properties of IDE by starting with a local analysis of these properties (e.g. at a
single node) and then lifting them by some inductive argument to the whole network.
This “localness” of IDE is also a crucial ingredient to most of the proofs in this chapter: E.g. we

compute IDE-thin flows by computing them on a node-by-node bases, we bound the number of
events in an IDE by bounding it separately at every node and we construct (and show correctness
of) networks for our NP-hardness results out of small gadgets. It is also because of this reliance on
local analysis that it seems unlikely that one can transfer these results directly to dynamic equilibria
in the full information setting where most of the questions answered in this chapter are still open.
In particular, a polynomial algorithm for computing thin flows in the full information setting is only
known for the case of series-parallel networks ([Kai22a]) while the question of whether a finite number
of extensions suffices to construct a full equilibrium flow is still completely open (see e.g. [Kai22b,
Section 4.6] or [OSK22, Section 7]).
There are, of course, also still open question when it comes to the computational complexity of

IDE: Our bounds for the worst case runtime of an algorithm constructing IDE in a single-commodity
network given in Corollary 5.16 is extremely large and seems unlikely to be tight. Improvements on this
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bound, therefore, would certainly seem plausible. Note that our lower bound from Example 5.19 would
even allow for a weakly polynomial algorithm. Another potential direction for future research could
be studying whether IDE in networks with zero free flow travel time edges or multiple commodities
can still be computed in finitely many extensions (for networks with both of these we know this not
to be the case by Example 5.17). In particular, for acyclic multi-commodity networks it seems quite
possible that one could adapt our proof for the single-commodity case as the only place we use a
specific property of single-commodity IDE is for Claim 9 in the proof of Lemma 5.11 where we used the
uniqueness of the node-labels in single-commodity IDE-thin flows. Finally, it would also be interesting
to obtain stronger hardness results for IDE like, for example, PPAD-hardness.
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6. Quality of IDE
In this chapter we study the quality of IDE in terms of the two quality measures defined in Sub-
section 3.2.2: Makespan and total travel time. More specifically, we want to answer the following
questions:

• Are IDE guaranteed to terminate (and, therefore, have finite makespan and total travel time)?

• If so, what lower and upper bounds can we find for makespan/total travel time of IDE?

• What is the worst ratio of makespan/total travel time of an IDE compared to an optimal flow
(i.e. the Price of Anarchy)?

Of course, all these question are only relevant for networks with finitely lasting network inflow rates.
Hence, with the exception of Proposition 6.3 and Theorem 6.5 we will only consider those throughout
this chapter. We will start by considering the first two questions first for acyclic networks, then for
single-commodity networks and, finally, for multi-commodity networks. We will then summarize all
our results in terms of the Price of Anarchy for these different classes of instances.

6.1. Upper Bounds
As our first results on the quality of IDE we will show upper bounds for both makespan and total
travel time in acyclic networks and single-commodity networks.

6.1.1. Acyclic Networks

For the case of acyclic networks we will show our upper bounds not just for IDE but actually for all
Vickrey flows. Given an acyclic network we denote by

τpmax
:= max {

∑
e∈p

τe | p a v, Ti-path for any v ∈ V, i ∈ I } and νmin := min { νe | e ∈ E } (48)

the free flow travel time along a physically longest path and the smallest capacity in the network,
respectively. Then, a natural guess of an upper bound for the makespan is θ̂ + τpmax + U since this
is the arrival time of the last particle that enters the network (at time θ̂) if it chooses the longest
possible path (with free flow travel time τpmax

) and, at some point, has to wait behind every other
particle of the network (leading to a total waiting time of U

νmin
). Intuitively speaking, this should be

the worst possible flow (with respect to the makespan). However, the following example shows that at
least proving this upper bound is not as straightforward:

Example 6.1. Consider the network in Figure 31 consisting of a single path consisting of three source
nodes s1, s2 and s3 followed by a single sink node t at the end. In the unique Vickrey flow (also
depicted in Figure 31) the blue particles entering the network at the leftmost source s1 first have
to wait on edge s2s3 behind the red particles entering the network at s2 and then again on edge s3t
behind the same particles as those in turn had to wait behind the green particles which entered the
network at the rightmost source s3.

Nevertheless, the conjectured bound itself still holds in this network and one could even argue that
it is still true that every particle is “responsible” for making the blue particles wait at most once as
the second time those particles get blocked by red particles, this is only because they, in turn, got
blocked, by green particles. For the discrete version of this flow model (with unit sized packets instead
of infinitesimal particles) this idea can in fact be formalized by introducing an additional virtual
packet (token) which enters and and leaves the network at the same time as the last particle while
also travelling through the network in such a way as to only be delayed at most once by any other
packet. This idea was used by Cao, Chen, Chen and Wang in [CCCW22] to show an upper bound on
the makespan for the discrete flow model. As Sering, Vargas Koch and Ziemke have shown in [SVZ22]
that (continuous) Vickrey flows can be approximated by discrete packet routings, this bound can be
transferred to our setting as well:
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Figure 31: An instance wherein particles of the blue flow are blocked twice by the same particles (of
red flow).
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Proposition 6.2. Let N be a feasible acyclic network with strictly positive, integer free flow travel
times and capacities, a single source,sink-pair for each commodity and finitely lasting network inflow.
Then we have

Ψ(f) ≤ θ̂ + U + τpmax

for any Vickrey flow f in N which has a path decomposition into path flows along simple paths.

Since we have not formally defined the discrete flow model here, we will not provide a full proof
for this proposition using the approach explained above. Instead, we will only provide a rough proof
sketch and refer to Theorem 6.5 (which generalizes Proposition 6.2) for a formal proof. We refer to
[Var20, Section 4] for a good introduction to the discrete packet routing model and to [SVZ22] for a
formal description of the discretization of (continuous) Vickrey flows.

Proof sketch. We start with the observation that we can assume without loss of generality that all
free flow times and all capacities are exactly 1. If this is not the case, this can be accomplished by
subdividing each edge e into first νe parallel edges and then each of those into a sequence of τe edges.
We can also transform f into a Vickrey flow in the new network in the natural way. We observe that
this transformation changes neither the free flow travel time of the physically longest path nor the
makespan of f .

Now, according to [SVZ22, Theorem 2] there exists a sequence (rn)n∈N∗ of discrete packet routings
such that in rn we have bn2Uc packets of size 1

n2 and a time step size of 1
n . Furthermore, the arrival

times Ψ(rn) of the last packet under rn converge to the arrival time of the last particle in f , i.e.
Ψ(rn)

n−→ Ψ(f). Hence, it suffices to bound the the arrival times Ψ(rn). To do that for any fixed
n ∈ N∗, we once more transform our network by scaling the time step size and free flow travel times
by n (which, in particular, scales both Ψ(rn) and τpmax

by n), edge capacities by n (i.e. setting νe = n
for all edges) and every packet by n2 (making them unit sized). Then we subdivide every edge in n
consecutive edges (with free flow travel time 1 each) and add, for every packet, a new source node
connected to the original one with a path consisting of na edges (with free flow travel time 1 and
capacity n) where a ∈ N0 is the starting time of the respective packet in the original network. Hence,
we can now let all particles start at time 0 and achieve the same routing rn as before (using the
appropriate transformations). Furthermore, the free flow travel time of the longest source-sink path in
the new network is clearly bounded by dnθ̂e+ nτpmax

.
For this new routing we can now apply [CCCW22, Theorem 2] to show that the last packet arrives

at its sink before time dnθ̂e+ nτpmax
+ bn2Uc

n which immediately implies Ψ(rn) ≤ θ̂+ 1
n + τpmax

+U in
the untransformed network. As this holds for any n ∈ N0, this shows Ψ(f) ≤ θ̂ + τpmax + U . ©

Using a cut-based approach set completely in the world of continuous flows we can find a more
general lower bound that not only bounds the arrival time of the last particle but also the amount of
flow having reached the sink at any given time. This then not only implies the above bound on the
makespan but also allows us to derive a bound on the total travel time. We first show this bound only
for single-commodity networks and afterwards deduce the bounds for multi-commodity networks from
it.

Proposition 6.3. Let N be an acyclic single-commodity network with a single sink reachable from
every node in N and νmin ≥ 1. Then we have

Z(θ) ≥ Z(ϑ) + min {F∆(ζ), θ − ϑ− τpmax
}

for any Vickrey flow f in N and all times θ ≥ ϑ ≥ 0.

Proof idea: Since we want to upper bound the worst case flows, we will consider pessimistic
distances, i.e. distance measured in terms of the longest possible path towards the sink. Now,
consider the node which is the furthest away from the sink (with respect to this pessimistic
distance). Then particles starting at this node have no other choice but to travel towards a node
which is strictly closer to the sink. Since all edge capacities are lower bounded by νmin, this
happens at least at a rate of νmin. Together this gives us a lower bound for how much flow must
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be closer to the sink than τpmax . We can now repeat this argument with the node which is second
furthest away from the sink and so on until we get our desired bound for flow already at the sink.
In other words, we will actually prove the following stronger claim: For any time and any

suitable cut of the network splitting it in nodes closer to the sink and nodes further away, there
is some lower bound (given explicitly in Claim 14) on how much flow must have crossed this cut
by then.

Proof. We start by defining for every node v ∈ V the pessimistic remaining distance

d̃v := max {
∑
e∈p

τe | p a v, t-path } ,

where t ∈ V is the unique sink node in N . This is well-defined as N is acyclic and t is reachable from
every node. Next, we claim that there exists some topological order which is compatible with the
pessimistic remaining distance:

Claim 13. There exists a topological order vn ≺ · · · ≺ v1 such that we have v1 = t and v ≺ w =⇒
d̃w ≤ d̃v for all nodes v, w as well as d̃v ≥ τvw + d̃w for all edges e = vw.

Proof. We can construct an order ≺ with the desired properties as follows: Start with any topological
order ≺′ (which exists by Proposition 2.65 because N is acyclic) and then sort the nodes first with
respect to their (non-increasing) pessimistic remaining distance and second with respect to the initial
topological order (i.e. use ≺′ to sort nodes with the same pessimistic remaining distance).

Since the network is acyclic, we have d̃t = 0. Furthermore, as we can reach t from every other node,
t is the only node without any outgoing edges. Thus, t is the largest node with respect to the initial
topological order. Together these two properties ensure that t is also the largest node with respect to
our new ordering ≺.
To show that ≺ is a topological order, take any edge vw. Then we have d̃v ≥ τvw + d̃w ≥ d̃w and,

therefore, v ≺ w. Finally, ≺ is compatible with the pessimistic remaining distance by construction. �

d̃ : 012345

tv2v3

v4v5

v6

v7v8

τv7v3
= 2

Figure 32: An acyclic single-sink network with nodes placed according to their pessimistic distance d̃v.
All edges except for edge v7v3 have free flow travel time 1. Thick edges are tight with
respect to pessimistic distance. The red line indicates the cut corresponding to k = 5. The
colour of the drawn flow shows whether this flow is counted in F≤5(θ) (red) or not (blue).

So, from now on we fix one such topological order and enumerate the nodes such that we have
vn ≺ · · · ≺ v1 = t. Let Vk := { v1, . . . , vk } be the set of the k largest nodes with respect to this order.
We then clearly have d̃v ≤ d̃vk for all v ∈ Vk and d̃v ≥ d̃vk for all v ∈ V \ Vk. We denote by

F≤k(θ) :=
∑
v∈Vk

Uv(θ) +
∑

e=vw∈δ−(Vk)

F−e (θ + min { d̃vk − d̃w, τe })
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the flow volume closer to the sink than vk (see Figure 32). Note, that we count flow which has already
reached the sink as still being in the network here. We now observe the following natural properties of
F≤k:

(i) F≤k : R≥0 → R≥0 is non-decreasing for any k ∈ [n],

(ii) F≤k(θ) ≥ F≤k−1(θ) for all k ∈ { 2, . . . , n } and θ ∈ R≥0,

(iii) F≤n(θ) = U(θ) and

(iv) F≤1(θ) = Z(θ) for all θ ∈ R≥0.

Monotonicity of F≤k follows immediately from the monotonicity of Uv and F−e . Furthermore, we
have F≤n(θ) =

∑
v∈V Uv(θ) = U(θ) since Vn = V and δ+(V ) = ∅ while F≤1(θ) = Z(θ) holds by strong

flow conservation at v1 = t and the fact that there are no outgoing edges from t. Finally, we have

F≤k−1(θ)
(©)
=

∑
v∈Vk−1

Uv(θ) +
∑

e=vw∈δ−(Vk−1)∩δ−(Vk)

F−e (θ + min { d̃vk−1
− d̃w, τe })

+
∑

e=vkw∈δ+(vk)

F−e (θ + min { d̃vk−1
− d̃w, τe })

(#)

≤
∑

v∈Vk−1

Uv(θ) +
∑

e=vw∈δ−(Vk−1)∩δ−(Vk)

F−e (θ + min { d̃vk − d̃w, τe })

+
∑

e=vkw∈δ+(vk)

F−e (θ + τe)

(4)

≤
∑

v∈Vk−1

Uv(θ) +
∑

e=vw∈δ−(Vk−1)∩δ−(Vk)

F−e (θ + min { d̃vk − d̃w, τe })

+
∑

e=vkw∈δ+(vk)

F+
e (θ)

(∗)
=

∑
v∈Vk−1

Uv(θ) +
∑

e=vw∈δ−(Vk−1)∩δ−(Vk)

F−e (θ + min { d̃vk − d̃w, τe })

+ Uvk(θ) +
∑

e∈δ−(vk)

F−e (θ)

=
∑

v∈Vk−1

Uv(θ) +
∑

e=vw∈δ−(Vk−1)∩δ−(Vk)

F−e (θ + min { d̃vk − d̃w, τe })

+ Uvk(θ) +
∑

e=vvk∈δ−(vk)

F−e (θ + min { d̃vk − d̃vk , τe })

(©)
=

∑
v∈Vk

Uv(θ) +
∑

e=vw∈δ−(Vk)∩δ−(Vk)

F−e (θ + min { d̃vk − d̃w, τe })

= F≤k(θ)

which shows that (ii) holds as well. Here we used the fact that all edges vkw ∈ δ+(vk) satisfy vk ≺ w
and, therefore, w ∈ Vk−1 at (©), strong flow conservation at the non-sink node vk for (∗), the fact
that F−e and F+

e are non-decreasing at (#) and flow conservation on edges at (4). Additionally, we
used d̃vk−1

≤ d̃vk .
Proving the proposition can now be accomplished by providing a suitable lower bound for F≤1. We

will now do that by showing the following lower bound for all F≤k via downwards induction on k:

Claim 14. For all k ∈ [n] and times θ ≥ ϑ ≥ 0 we have

F≤k(θ) ≥Mk(θ, ϑ) := min {U(ϑ), F≤k(ϑ) + θ − ϑ− τpmax
+ d̃vk } . (49)
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Proof. We will show this claim by downwards induction over k:

Base Case (k = n): This case is trivial as we have:

F≤n(θ)
(iii)
= U(θ) ≥ U(ϑ) ≥ min {U(ϑ), F≤n(ϑ) + θ − ϑ− τpmax

+ d̃vn } = Mn(θ, ϑ).

Induction Step (k→ k − 1): Fix any ϑ ≥ 0. We then have to show

F≤k−1(θ)−Mk−1(θ, ϑ) ≥ 0

for all θ ≥ ϑ. We do this separately for the two intervals [ϑ, ϑ+ τpmax
− d̃vk−1

] and (ϑ+ τpmax
−

d̃vk−1
,∞).

The case θ ∈ [ϑ, ϑ+ τpmax − d̃vk−1
] is trivial as we have

F≤k−1(θ)
(i)
≥ F≤k−1(ϑ) ≥ F≤k−1(ϑ) + θ − (ϑ+ τpmax

− d̃vk−1
)

≥ min {U(ϑ), F≤k−1(ϑ) + θ − ϑ− τpmax
+ d̃vk−1

} = Mk−1(θ, ϑ).

For the case θ ∈ (ϑ+ τpmax
− d̃vk−1

,∞) we want to apply Proposition 2.48. This is possible since
F≤k−1(θ)−Mk−1(θ, ϑ) is (as function in θ) absolutely continuous as sum of absolutely continuous
functions and we have already shown that F≤k−1(ϑ+τpmax

−d̃vk−1
)−Mk−1(ϑ+τpmax

−d̃vk−1
, ϑ) ≥

0. Thus, take any time θ ∈ (ϑ+ τpmax − d̃vk−1
,∞) where F≤k−1(θ)−Mk−1(θ, ϑ) is differentiable

and we have F≤k−1(θ)−Mk−1(θ, ϑ) < 0. Then, we have

Mk−1(θ, ϑ) = min {U(ϑ), F≤k−1(ϑ) + θ − ϑ− τpmax
+ d̃vk−1

}
(ii)
≤ min {U(ϑ), F≤k(ϑ) + (θ + d̃vk−1

− d̃vk)− ϑ− τpmax
+ d̃vk }

= Mk(θ + d̃vk−1
− d̃vk , ϑ)

(50)

which gives us

0 > F≤k−1(θ)−Mk−1(θ, ϑ)
(50)
≥ F≤k−1(θ)−Mk(θ + d̃vk−1

− d̃vk , ϑ)

(�)
≥ F≤k−1(θ)− F≤k(θ + d̃vk−1

− d̃vk)

=
∑

v∈Vk−1

∫ θ

θ+d̃vk−1
−d̃vk

uv(ζ)dζ − Uvk(θ + d̃vk−1
− d̃vk)

+
∑

e=vw∈δ−(Vk)∩δ−(Vk−1)

(
F−e (θ + min { d̃vk−1

− d̃w, τe })− F−e (θ + d̃vk−1
− d̃vk + min { d̃vk − d̃w, τe })

)
+
∑

e=vw∈δ−(Vk−1)\δ−(Vk)

F−e (θ + min { d̃vk−1
− d̃w, τe })−

∑
e=vw∈δ−(Vk)\δ−(Vk−1)

F−e (θ + d̃vk−1
− d̃vk + min { d̃vk − d̃w, τe })

(#)

≥ −Uvk(θ + d̃vk−1
− d̃vk)

+
∑

e=vw∈δ−(Vk)∩δ−(Vk−1)

(
F−e (θ + min { d̃vk−1

− d̃w, τe })− F−e (θ + min { d̃vk−1
− d̃w, τe })

)
+
∑

e=vkw∈δ+(vk)

F−e (θ + min { d̃vk−1
− d̃vk , τe })−

∑
e=vvk∈δ−(vk)

F−e (θ + d̃vk−1
− d̃vk + min { d̃vk − d̃vk , τe })

= −Uvk(θ + d̃vk−1
− d̃vk)

+
∑

e=vkw∈δ+(vk)

F−e (θ + min { d̃vk−1
− d̃w, τe })−

∑
e∈δ−(vk)

F−e (θ + d̃vk−1
− d̃vk)
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(∗)
=
∑

e=vkw∈δ+(vk)

F−e (θ + min { d̃vk−1
− d̃w, τe })−

∑
e=vkw∈δ+(vk)

F+
e (θ + d̃vk−1

− d̃vk)

(#),(©)

≥
∑

e=vkw∈δ+(vk)

(
F−e (θ + min { d̃vk−1

− d̃w, τe })− F+
e (θ + min { d̃vk−1

− d̃w − τe, 0 })
)

=
∑

e=vkw∈δ+(vk)

−Qe(θ + min { d̃vk−1
− d̃w, τe } − τe).

Here we used induction together with θ + d̃vk−1
− d̃vk ≥ ϑ + τpmax − d̃vk ≥ ϑ (using our case

assumption) at (�). At (#) we used the fact that F+
e , F−e and Uv are non-decreasing and at (∗)

we used strong flow conservation at the non-sink node vk. Finally, for (©) we observe that
d̃w + τe ≤ d̃vk for any edge e = vkw ∈ δ+(vk) implies d̃vk−1

− d̃vk ≤ d̃vk−1
− d̃w − τe for such

edges.

Thus, there is at least one edge e = vkw ∈ δ+(vk) ⊆ δ−(Vk−1) which satisfies Qe(θ +
min { d̃vk−1

− d̃w, τe } − τe) > 0. As the queue on this edge operates at capacity, this implies

∂F−e (θ + min { d̃vk−1
− d̃w, τe }) = f−e (θ + min { d̃vk−1

− d̃w, τe }) = νe ≥ νmin ≥ 1

and, therefore,

∂θ (F≤k−1(θ)−Mk−1(θ, ϑ)) ≥ f−e (θ + min { d̃vk−1
− d̃w, τe })− 1 ≥ 0

for almost all such θ. Thus, Proposition 2.48 guarantees F≤k−1(θ) −Mk−1(θ, ϑ) ≥ 0 for all
θ ≥ ϑ+ τpmax − d̃vk−1

which proves the claim. �

The proposition now follows by choosing k = 1:

Z(θ)
(iv)
= F≤1(θ)

Cl. 14
≥ M1(θ, ϑ) = min {U(ϑ), F≤1(ϑ) + θ − ϑ− τpmax

+ d̃t }
(iv)
= min {U(ϑ), Z(ϑ) + θ − ϑ− τpmax

+ 0 } Prop. 3.53
= Z(ϑ) + min {F∆(ϑ), θ − ϑ− τpmax

} .

This result is now easily extended to the multi-commodity case (in acyclic networks!) by adding a
super-sink:

Corollary 6.4. Let N be an acyclic multi-commodity network where the network inflow rates at all
sink nodes are essentially bounded. Then we have

Z(θ) ≥ Z(ϑ) + min {F∆(ϑ), νmin · (θ − ϑ− τpmax) }

for any Vickrey flow f in N and all times θ ≥ ϑ ≥ 0.

Proof. We want to reduce this corollary to the case of Proposition 6.3. For this we transform the
given network N and flow f into a new single-commodity network N ′ and flow f ′ as follows: First,
we scale all edge capacities in N by 1

νmin
and then add a new sink node t and an edge vt with free

flow travel time 0 and capacity

ν′vt := 1
νmin

( ∑
e∈δ−(v)

νe +
∑

i∈I:v∈Ti

ess sup {uv,i(θ) | θ ∈ R≥0 }
)

from every node v in N to the new node t. Next, we define the node inflow rates in N ′ by
setting u′v := 1

νmin

∑
i∈I uv,i for all nodes from the original network and ut := 0 at the new node

t and declare t to be the only sink node in N ′. Finally, we define a flow f ′ in N ′ by setting
f ′+e := 1

νmin
f+
e and f ′−e := 1

νmin
f−e for all edges e of the original network while for any new edge vt

setting f ′+vt := f ′−vt := 1
νmin

∑
i∈I ∂Bv,i.

The new network N ′ is now clearly an acyclic single-commodity network with edge capacities of at
least 1 and a single sink node reachable from every other node. Furthermore, we have τ ′pmax

= τpmax
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and f ′ is a Vickrey flow in N ′ with Z ′ = 1
νmin
· Z (note that the edge capacities on the new edges are

chosen large enough such that they are not violated by our choice of f ′−vt ). Thus, we get

Z(θ) = νmin · Z ′(θ)
Prop. 6.3
≥ νmin · Z ′(ϑ) + min { νmin · F ′

∆
(ϑ), νmin ·

(
θ − ϑ− τ ′pmax

)
}

= Z(ϑ) + min {F∆(ϑ), νmin · (θ − ϑ− τpmax
) }

for all times θ ≥ ϑ ≥ 0.

Using this result we can now also bound makespan and total travel time of Vickrey flows in general
acyclic networks:

Theorem 6.5. Let N be an acyclic multi-commodity network with finitely lasting network inflow
rates and essentially bounded network inflow rates at all sink nodes. Then we have

Ψ(f) ≤ θ̂ + U
νmin

+ τpmax , and Ξ(f) ≤ U2

νmin
+ Uτpmax

for any Vickrey flow f in N where U := U(θ̂) is the total flow volume to ever enter the network.

Proof. As the assumptions here are the same as in Corollary 6.4, we can use the lower bound on Z(θ)

from there. The makespan bound then follows by choosing ϑ := θ̂ and θ := θ̂ + U
νmin

+ τpmax
which

gives us
Z(θ) = Z(θ̂ + U

νmin
+ τpmax

) ≥ Z(θ̂) + min {F∆(θ̂), U } ≥ U = U(θ)

and, therefore, F∆(θ) = U(θ) − Z(θ) ≤ 0 by Proposition 3.53. This, then shows Ψ(f) ≤ θ =

θ̂ + U
νmin

+ τpmax .
For the bound on the total travel time we choose ϑ := ζ and θ := ζ + τpmax

+ U
νmin

for any ζ ≥ 0 to
get

Z(ζ + τpmax
+ U

νmin
)− Z(ζ) ≥ min {F∆(ζ), U } ≥ F∆(ζ).

Together with Proposition 3.75 we then get

Ξ(f) =

∫ Ψ(f)

0

F∆(ζ)dζ ≤
∫ Ψ(f)

0

(
Z(ζ + τpmax

+ U
νmin

)− Z(ζ)
)

dζ

=

∫ Ψ(f)

0

Z(ζ + τpmax
+ U

νmin
)dζ −

∫ Ψ(f)

0

Z(ζ)dζ

=

∫ Ψ(f)+τpmax+ U
νmin

τpmax+ U
νmin

Z(ζ)dζ −
∫ Ψ(f)

0

Z(ζ)dζ

≤
∫ Ψ(f)+τpmax+ U

νmin

Ψ(f)

Z(ζ)dζ

=
(
τpmax + U

νmin

)
U.

6.1.2. General Single-Commodity Networks

In acyclic networks it is intuitively clear that all Vickrey flows (with finite θ̂) eventually terminate –
which is exactly what we showed in the previous section. This is obviously not true any more as soon
as our network contains a cycle since then we can just send flow around this cycle forever. Thus, we
will now restrict ourselves to flows which are also IDE.

However, even for such flows cycling behaviour is possible (see e.g. the first IDE described in
Example 3.65) and, thus, it is not as obvious as it may seem whether IDE in general networks even
terminate (and, if so, in what time). In fact, it turns out that the answer to this question is different
for single-commodity IDE than it is for multi-commodity networks. We will consider the first case in
this section and will come back to the multi-commodity case in Subsection 6.2.2. Since the proof for
the upper bounds on makespan and total travel time will be rather lengthy, we first give a rough idea
of its main steps:
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Proof idea: Our first step towards bounding the makespan (and total travel time) in general
single-commodity networks will be the following observation: Whenever there is almost no flow
in the network, then flow particles in an IDE cannot be diverted too far away from the physically
shortest paths and, therefore, may only use an acyclic subgraph of the whole network. Hence, we
can use our bounds for acyclic networks from the last subsection 6.1.1.
Next, we have to show that such a state of an almost empty network is eventually reached.

For this we focus on the sink nodes and distinguish to cases: As long as we have steady inflow
into the sink nodes, we are also making progress towards an empty network (as the total flow
volume in the network is bounded). If, on the other hand, we have only very little inflow into
the sink nodes over some extended period of time, this means that there also cannot be much
flow on the edges leading towards the sinks (using the no-idling property of Vickrey flows – cf.
Corollary 3.24). This then implies that the subgraph consisting of the sink nodes and their
closest neighbourhood is almost empty. Hence, no flow can leave this neighbourhood (by the
same argument as in the first step). In some sense this subgraph, then, acts like a sink for the
rest of the network and we will, therefore, call it a “sink-like-subgraph”. Repeating the argument
we just used for the sink nodes now for the sink-like subgraph, allows us to iteratively extend this
subgraph until we can conclude that the whole network is sink-like and, therefore, almost empty.
Thus, for any long enough time interval during which an IDE does not terminate, we have

some lower bound on the amount of flow that must reach a sink during this time. From this we
can then immediately deduce upper bounds on makespan and total travel time.

In order to formalize the first step of the proof we will again make use of the set Ẽ ⊆ E introduced
in Lemma 5.13, only this time specifically for θ = 0, i.e. for the network without flow:

Ẽ := { e = vw ∈ E | Lv(0) > τe + Lw(0)− ε }

From Lemma 5.13 we already know that this set is acyclic (for a suitable choice of ε > 0) provided
that the network does not contain any cycles of free flow travel time zero. Additionally, we will now
show that this set also contains all active edges whenever there is almost no flow on any physically
shortest path.

Proposition 6.6. Let N be a single-commodity network without dead-end nodes, f a Vickrey flow in
N and ε > 0 some constant. If then for some node v ∈ V and time θ ≥ 0 we have

∑
e∈p F

∆
e (θ) < ενmin

for all physically shortest v, T -paths, then all active edges e = vw leaving v satisfy

Lv(0) > τe + Lw(0)− ε.

Proof. Let e = vw ∈ δ+(v) ∩ E(θ) be an active edges at time θ, p a physically shortest v, T -path and
p′ an active w, T -path at time θ. Then we have

Lv(θ) ≤ Cp(θ) =
∑
e∈p

(
τe +

Qe(θ)

νe

)
≤
∑
e∈p

τe +
∑
e∈p

F∆
e (θ)

νe
≤
∑
e∈p

τe +
∑
e∈p

F∆
e (θ)

νmin

= Lv(0) + 1
νmin

∑
e∈p

F∆
e (θ) < Lv(0) + ε

as well as

Lw(θ) = Cp′(θ) ≥
∑
e∈p′

τe ≥ Lw(0).

Together with vw being active at time θ this gives us

Lv(0) > Lv(θ)− ε = Lw(θ) + Cvw(θ)− ε ≥ Lw(0) + τvw − ε.

For our second step, we now need to make precise the notion of sink-like subgraphs:
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Definition 6.7. Let N be a single-commodity network, f some IDE in N , [a, b] ⊆ R≥0 some time
interval, ε > 0 some constant, W ⊆ V some subset of nodes and H := G[W ] the subgraph induced by
W . We call H an ε-sink-like subgraph on [a, b] if it satisfies the following three properties:

• T ⊆W .

• For all v ∈W we have δ+(v) ∩ Ẽ ⊆ E(H).

• We have

volH(a, b) :=
∑

e∈E(H)

F∆
e (a) +

∑
e∈δ−(W )

∫ b

a

f−e (ζ)dζ +
∑
v∈W

∫ b

a

uv(ζ)dζ <
ενmin

2
.

Observation 6.8. As the notation suggests, volH(a, b) is an upper bound on the volume of flow in H
at any time θ during [a, b]:∑
e∈E(H)

F∆
e (θ)

Prop. 3.53
=

∑
v∈W

Uv(θ) +
∑

e∈δ−(W )

F−e (θ)−
∑

e∈δ+(W )

F+
e (θ)−

∑
v∈W

Bv(θ)

≤
∑
v∈W

Uv(a) +
∑

e∈δ−(W )

F−e (a)−
∑

e∈δ+(W )

F+
e (a)−

∑
v∈W

Bv(a) +
∑
v∈W

∫ θ

a

uv(ζ)dζ +
∑

e∈δ−(W )

∫ θ

a

f−e (ζ)dζ

Prop. 3.53
=

∑
e∈E(H)

F∆
e (a) +

∑
v∈W

∫ θ

a

uv(ζ)dζ +
∑

e∈δ−(W )

∫ θ

a

f−e (ζ)dζ ≤ volH(a, b)

With this observation an immediate consequence of Proposition 6.6 is now that if the whole network
is sink-like, then an IDE may only use an acyclic subgraph of the network. If this happens at a time
where no new flow enters the network anymore (i.e. after time θ̂), we can apply our termination bound
for acyclic networks from the previous section to show that the flow terminates.

Corollary 6.9. Let N be a single-commodity network, f an IDE in N and ε > 0 some constant such
that we have

∑
e∈c τe ≥ ε|c| for all cycles c in N . If the whole network is an ε-sink-like subgraph on

some time interval [a, b] ⊆ R≥0 with b− a ≥ ε+ τmax + τpmax
, where τmax := max { τe | e ∈ E } is the

free flow travel time of the longest edge in the network, then we have

Z(b) ≥ U(a+ ε
2 + τmax).

In particular, if there exists some time θ ≥ θ̂ such that the whole network is an ε-sink-like subgraph
at time θ (i.e. on the interval [θ, θ]), then it is sink-like on [θ, ϑ] for any ϑ ≥ θ and f terminates before
time θ + ε+ τmax + τpmax .

Proof. If the whole network is ε-sink-like on [a, b], then Observation 6.8 and Proposition 6.6 together
show that during this interval all active edges are in Ẽ, i.e. f may only enter edges in Ẽ in that time
interval. Furthermore, Corollary 3.24 ensures that all flow has left the edge it was on at time θ by
time a+ max { ενmin

2νe
+ τe | e ∈ E } ≤ a+ ε

2 + τmax =: ã. Thus, we know that all edges carrying flow
after time ã must be in Ẽ. Since our choice of ε guarantees that (V, Ẽ) is acyclic (by Lemma 5.13),
we can apply Corollary 6.4 to obtain

Z(ã+ ε
2 + τpmax

) ≥ Z(ã) + min {F∆(ã), ενmin

2 }
Obs. 6.8
≥ Z(ã) + F∆(ã) = U(ã).

Now, for the second part take any time ϑ ≥ θ ≥ θ̂. Then we have

volG(θ, ϑ) =
∑
e∈E

F∆
e (θ) +

∑
v∈V

∫ ϑ

θ

uv(ζ)dζ =
∑
e∈E

F∆
e (θ) = volG(θ, θ) < ενmin

2 .
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Hence, the whole network is an ε-sink-like subgraph on [θ, ϑ]. Thus, we can apply the first part with
a = θ and b = θ + ε+ τmax + τpmax to get

Z(θ + ε+ τmax + τpmax) ≥ U(θ + ε
2 + τpmax) = U(θ̂).

Therefore, f terminates before time θ + ε+ τmax + τpmax
.

Proposition 6.10. Let N be a single-commodity network without any dead-end nodes or cycles of
free flow travel time zero and f any IDE in N . Furthermore, let W ( V be some proper subset of
nodes, ε > 0 some constant such that we have

∑
e∈c τe ≥ ε|c| for any cycle c in N and a ∈ R≥0 any

time. Finally, define
b := a+

∑
e∈E\E(H)

(
ενmin

2νe
+ τe

)
.

If H = G[W ] is an ε-sink-like subgraph on [a, b], then there exists a node v ∈ V \ W such that
H ′ := G[W ′] with W ′ := W ∪ { v } is an ε-sink-like subgraph on [a, b′] where b′ is defined for H ′
analogous to b for H, i.e.

b′ := a+
∑

e∈E\E(H′)

(
ενmin

2νe
+ τe

)
.

Proof. According to Lemma 5.13 the set Ẽ contains no cycles. Hence, there exists a topological order
on (V, Ẽ). Now choose v ∈ V \W as the last node (with respect to this topological order) which is
not in W . We will show that W ′ := W ∪ { v } then defines an ε-sink-like subgraph H ′ := [W ]. First of
all we clearly have T ⊆W ⊆W ∪ { v }. Next, for any edge e = vw ∈ δ+(v) ∩ Ẽ we have w ∈W (by
the choice of v) and, therefore, e ∈ E[H ′].

Thus, it now remains to show that H ′ satisfies the third condition as well: We will accomplish that
by showing that all flow currently on the edges in E(H ′) \E(H) as well as the additional inflow into
node v during [a, b′] will enter H over the course of [a, b]. Hence, the bound for H gives us the same
bound for H ′. This will result from the following claim:

Claim 15. Define b̃ := b′ +
∑
e∈δ+(W )∩δ−(v)

(
ενmin

2νe
+ τe

)
. Then the following properties hold:

(i) All flow on edges from H to v at time a reaches v before time b̃, i.e.

F∆
e (a) ≤

∫ b̃

a

f−e (ζ)dζ for all e ∈ δ+(W ) ∩ δ−(v).

(ii) Any edges from H to v carries a flow volume of less than ενmin

2 at time a, i.e.

F∆
e (a) < ενmin

2 for all e ∈ δ+(W ) ∩ δ−(v).

(iii) All flow reaching v between a and b̃ enters an edge towards H, i.e.∫ b̃

a

uv(ζ)dζ +
∑

e∈δ−(v)

∫ b̃

a

f−e (ζ)dζ =
∑

e∈δ+(v)∩δ−(W )

∫ b̃

a

f+
e (ζ)dζ.

(iv) All flow on an edge from v to H during any time in [a, b̃] reaches H before time b, i.e.

F∆
e (a) +

∫ b̃

a

f+
e (ζ)dζ ≤

∫ b

a

f−e (ζ)dζ for all e ∈ δ+(v) ∩ δ−(W ).
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t1

t2

v

v′′

v′

v

e3

e1e2

H
H ′

Figure 33: The situation in Proposition 6.10. The thick edges are part of the set Ẽ. Thus, v′ would
have been another valid choice for extending H whereas v′′ would not be (as v is closer to
H than v′′). The blue and green arrow exemplifies the statements in Claim 15: All flow
on edge e1 at time a reaches v by time b̃ (Claim 15(i)), enters edge e3 (Claim 15(iii)) and
reaches H by time b (Claim 15(iv)). Similarly, all flow reaching v via edge e2 before time b̃
also enters edge e3 (Claim 15(iii)) and reaches H by time b (Claim 15(iv)).

(v) Any edges from v to H carries a flow volume of less than ενmin

2 at any time between a and b̃, i.e.

F∆
e (θ) < ενmin

2 for all e ∈ δ+(v) ∩ δ−(W ), θ ∈ [a, b̃].

Proof. First, we observe that due to our choice of b, b′ and b̃ we have

a+ ενmin

2νe
+ τe ≤ b̃ for all e ∈ δ+(W ) ∩ δ−(v) and b̃+ ενmin

2νe
+ τe ≤ b for all e ∈ δ+(v) ∩ δ−(W ).

We now show the five statements of the claim in reverse order as we will use (v) to show (iv) and so
on.

(v): Take any edge e ∈ δ+(v) ∩ δ−(W ) from v to H and assume for contradiction that at some time
θ ∈ [a, b̃] it carries a flow volume of at least ενmin

2 . By Corollary 3.24 a flow of at least volume
ενmin

2 then leaves edge e between θ ≥ a and θ+ ενmin

2νe
+ τe ≤ b̃+ ενmin

2νe
+ τe ≤ b. This then implies

volH(a, b) ≥
∫ b

a

f−e (ζ)dζ ≥
∫ θ+

ενmin

2νe
+τe

θ

f−e (ζ)dζ ≥ ενmin

2 ,

which is a contradiction to H being an ε-sink-like subgraph on [a, b].

(iv): Using (v) we get b̃ +
F∆
e (b̃)
νe

+ τe < b̃ + ενmin

2νe
+ τe ≤ b for any edge e ∈ δ+(v) ∩ δ−(W ). Thus,

Corollary 3.24 implies

F∆
e (b̃) ≤

∫ b̃+
F∆
e (b̃)

νe
+τe

b̃

f−e (ζ)dζ ≤
∫ b

b̃

f−e (ζ)dζ, (51)

from which we get

F∆
e (a) +

∫ b̃

a

f+
e (ζ)dζ = F+

e (a)− F−e (a) + F+
e (b̃)− F+

e (a) = F+
e (b̃)− F−e (a)

= F+
e (b̃)− F−e (b̃) + F−e (b̃)− F−e (a) = F∆

e (b̃) +

∫ b̃

a

f−e (ζ)dζ

(51)
≤
∫ b

b̃

f−e (ζ)dζ +

∫ b̃

a

f−e (ζ)dζ =

∫ b

a

f−e (ζ)dζ.
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(iii): As H is an ε-sink-like subgraph, all sink nodes are already contained and, in particular, v
cannot be a sink node. Hence, strong flow conservation together with f being an IDE imply
that it suffices to show that during [a, b̃] all active edges leaving v lead to H, i.e. we have
δ+(v) ∩E(θ) ⊆ δ+(v) ∩ δ−(W ) for all θ ∈ [a, b̃]. To show this, we want to apply Proposition 6.6.
So, let p be a physically shortest v, T -path. Then, we have Lv′(0) = τe′ + Lw′(0) for any edge
e′ = v′w′ ∈ p and, therefore, all edges of p are contained in Ẽ. Thus, by the choice of v the first
edge of p leads into H and, as H is an ε-sink-like subgraph, every subsequent edge is contained
in E(H). Thus, writing p = e′, p′ we get∑

e∈p
F∆
e (θ) = F∆

e′ (θ) +
∑
e∈p′

F∆
e (θ)

(v)
< ενmin

2 +
∑
e∈p′

F∆
e (θ)

Obs. 6.8
≤ ενmin

2 + volH(a, b) < ενmin

for any time θ ∈ [a, b̃]. Hence, we can apply Proposition 6.6 to get δ+(v) ∩ E(θ) ⊆ δ+(v) ∩ Ẽ ⊆
δ+(v) ∩ δ−(W ), where the second inclusion holds by the choice of v.

(ii): This is essentially the same proof as for (v): Take any edge e ∈ δ+(W ) ∩ δ−(v) and assume for
contradiction that we have F∆

e (a) ≥ ενmin

2 . According to Corollary 3.24 a flow of volume at least
ενmin

2 then leaves edge e between a and a+ ενmin

2νe
+ τe ≤ b̃. Using (iii) and (iv) this then leads to

a contradiction to H being an ε-sink-like subgraph on [a, b] as follows:

ενmin

2

Cor. 3.24
≤

∫ a+
ενmin
2νe

+τe

a

f−e (ζ)dζ ≤
∫ b̃

a

f−e (ζ)dζ ≤
∑

e′∈δ−(v)

∫ b̃

a

f−e′ (ζ)dζ

(iii)
≤

∑
e′∈δ+(v)∩δ−(W )

∫ b̃

a

f+
e′ (ζ)dζ

(iv)
≤

∑
e′∈δ+(v)∩δ−(W )

∫ b

a

f−e′ (ζ)dζ ≤ volH(a, b).

(i): This now follows from (ii) in the same way that (iv) followed from (v): We have a+
F∆
e (a)
νe

+ τe
(ii)
≤

a+ ενmin

2νe
+ τe ≤ b̃ and, thus,

F∆
e (a)

Cor. 3.24
≤

∫ a+
F∆
e (a)

νe
+τe

a

f−e (ζ)dζ ≤
∫ b̃

a

f−e (ζ)dζ

for any edge e ∈ δ+(W ) ∩ δ−(v). �

Combining the statements (i), (iii) and (iv) from the above claim, we are now able to show the
third property of H ′ being an ε-sink-like subgraph on [a, b̃] (and, therefore, on [a, b′]) by a direct
computation:

volH′(a, b̃) =
∑

e∈E(H′)

F∆
e (a) +

∑
e∈δ−(W ′)

∫ b̃

a

f−e (ζ)dζ +
∑
w∈W ′

∫ b̃

a

uw(ζ)dζ

=
∑

e∈δ+(v)∩δ−(W )

F∆
e (a) +

∑
e∈δ+(W )∩δ−(v)

F∆
e (a) +

∑
e∈δ−(v)\δ+(W )

∫ b̃

a

f−e (ζ)dζ +

∫ b̃

a

uv(ζ)dζ

+
∑

e∈E(H)

F∆
e (a) +

∑
e∈δ−(W )\δ+(v)

∫ b̃

a

f−e (ζ)dζ +
∑
w∈W

∫ b̃

a

uw(ζ)dζ

(i)
≤

∑
e∈δ+(v)∩δ−(W )

F∆
e (a) +

∑
e∈δ+(W )∩δ−(v)

∫ b̃

a

f−e (ζ)dζ +
∑

e∈δ−(v)\δ+(W )

∫ b̃

a

f−e (ζ)dζ +

∫ b̃

a

uv(ζ)dζ

+
∑

e∈E(H)

F∆
e (a) +

∑
e∈δ−(W )\δ+(v)

∫ b̃

a

f−e (ζ)dζ +
∑
w∈W

∫ b̃

a

uw(ζ)dζ
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(iii)
=

∑
e∈δ+(v)∩δ−(W )

F∆
e (a) +

∑
e∈δ+(v)∩δ−(W )

∫ b̃

a

f+
e (ζ)dζ

+
∑

e∈E(H)

F∆
e (a) +

∑
e∈δ−(W )\δ+(v)

∫ b̃

a

f−e (ζ)dζ +
∑
w∈W

∫ b̃

a

uw(ζ)dζ

(iv)
≤

∑
e∈δ+(v)∩δ−(W )

∫ b

a

f−e (ζ)dζ

+
∑

e∈E(H)

F∆
e (a) +

∑
e∈δ−(W )\δ+(v)

∫ b̃

a

f−e (ζ)dζ +
∑
w∈W

∫ b̃

a

uw(ζ)dζ

≤
∑

e∈E(H)

F∆
e (a) +

∑
e∈δ−(W )

∫ b

a

f−e (ζ)dζ +
∑
w∈W

∫ b

a

uv(ζ)dζ

= volH(a, b) < ενmin

2 .

Hence, H ′ is an ε-sink-like subgraph on [a, b′].

This proposition now implies that whenever we have a sufficiently long time interval with very small
total inflow into the sinks, then the the whole network is an ε-sink-like subgraph at the beginning of
that interval.

Corollary 6.11. Let N be a single-commodity network without any dead-end nodes or cycles of free
flow travel time zero and no outgoing edges from any sink node. Let f be any IDE in N , ε > 0 some
constant such that we have

∑
e∈c τe ≥ ε|c| for any cycle c in N and [a, b] ⊆ R≥0 some time interval.

If we have b − a ≥
∑
e∈E

(
ενmin

2νe
+ τe

)
and Z(b) − Z(a) < ενmin

2 , then the whole network is an
ε-sink-like subgraph at time a.

Proof. We start by observing that H := G[T ] is an ε-sink-like subgraph: The first two properties are
trivially satisfied and for the third we have

volH(a, b) =
∑

e∈δ−(T )

∫ b

a

f−e (ζ)dζ +
∑
t∈T

∫ b

a

ut(ζ)dζ
δ+(T )=∅

= Z(b)− Z(a) < ενmin

2 .

Thus, we can iteratively apply Proposition 6.10 to show that the whole network is an ε-sink-like
subgraph on [a, a].

Now, if the situation from this corollary occurs at any time after θ̂, then Corollary 6.9 implies that
the IDE terminates shortly after. This observation now gives us upper bounds on both the makespan
and on the total travel time of any single-commodity IDE.

Theorem 6.12. Let N be a single-commodity network where all network inflow rates are essentially
bounded and finitely lasting, which has no cycles of free flow travel time zero and no edges leaving any
sink node. Then for any IDE f in N the makespan is bounded by

Ψ(f) ≤ θ̂ + U
∑
e∈E

(
1
νe

+ 2τe
ενmin

)
+ ε+ τmax + τpmax

while the total travel time is bounded by

Ξ(f) ≤ U2 ·
(∑
e∈E

(
1
νe

+ 2τe
ενmin

)
+ 4

(
1

νmin
+ τmax

ενmin
+

τpmax

ενmin

))
where ε := min { 1

|c|
∑
e∈c τe | c a cycle in N } is the minimum mean free flow travel time around any

cycle in the network.
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Proof. We first note that we can assume without loss of generality that N has no dead-end nodes.
Otherwise we could just remove them without changing the flow in the remaining network or the
overall makespan (see Proposition 3.66). Now, to show the makespan bound consider the intervals

[ak, ak+1] :=

[
θ̂ + k ·

∑
e∈E

(
ενmin

2νe
+ τe

)
, θ̂ + (k + 1) ·

∑
e∈E

(
ενmin

2νe
+ τe

)]
for k = 0, 1, . . . ,

⌊
2U
ενmin

⌋
.

Since Z is non-negative, non-decreasing and upper bounded by U , there must be some k ≤ 2U such
that we have Z(ak+1)− Z(ak) < ενmin

2 as otherwise we would have

Z
(⌊

2U
ενmin

⌋)
=

⌊
2U
ενmin

⌋∑
k=0

(Z(ak+1)− Z(ak)) ≥
(⌊

2U
ενmin

⌋
+ 1
)
· ενmin

2 > 2U
ενmin

· ενmin

2 = U.

But then the whole network is an ε-sink-like subgraph at time ak by Corollary 6.11 which, according
to Corollary 6.9, implies that f terminates before

ak + ε+ τmax + τpmax
≤ θ̂ +

⌊
2U
ενmin

⌋∑
e∈E

(
ενmin

2νe
+ τe

)
+ ε+ τmax + τpmax

.

For the bound on the total travel time we fix some (small) γ > 0 and define a new sequence of
intervals [bk, bk+1] by setting b0 := 0 and then recursively

bk+1 := sup
{
θ ∈ [bk,Ψ(f)]

∣∣∣ Z(θ)− Z(bk) ≤ ενmin

2+γ

}
for k = 0, 1, . . . ,

⌊
(2+γ)U
ενmin

⌋
=: K.

Since Z is continuous, we have Z(bk+1)− Z(bk) = ενmin

2+γ for all those intervals except for, maybe, the
last one. Thus, we have Z(bK) = K · ενmin

2+γ ≥ U −
ενmin

2+γ and, therefore, bK+1 = Ψ(f).
We now separate these intervals into two groups: We say that an interval [bk, bk+1] is short if

bk−1 − bk ≤ α :=
∑
e∈E

(
ενmin

2νe
+ τe

)
+ ε+ τmax + τpmax

and long otherwise. Furthermore, we denote by S ⊆ {0, . . . ,K} the set of indices of short intervals
and by L the set of indices of long intervals. Now, for any long interval [bk, bk+1] Corollary 6.11
guarantees that the whole network is ε-sink-like on [bk, bk+1−

∑
e∈E

(
ενmin

2νe
+ τe

)
]. Thus, we can apply

Corollary 6.9 for any time in θ ∈ [bk, bk+1 −
∑
e∈E

(
ενmin

2νe
+ τe

)
− ε− τmax − τpmax ] = [bk, bk+1 −α] to

get

Z(θ + ε+ τmax + τpmax) ≥ U(θ + ε
2 + τmax) ≥ U(θ)

Prop. 3.53
= Z(θ) + F∆(θ). (52)

This, in turn, allows us to upper bound the total travel times incurred during the first part of any
long interval by∫ bk+1−α

bk

F∆
e (ζ)dζ

(52)
≤
∫ bk+1−α

bk

Z(ζ + ε+ τmax + τpmax)− Z(ζ)dζ

=

∫ bk+1−α

bk

Z(ζ + ε+ τmax + τpmax
)dζ −

∫ bk+1−α

bk

Z(ζ)dζ

=

∫ bk+1−α+ε+τmax+τpmax

bk+ε+τmax+τpmax

Z(ζ)dζ −
∫ bk+1−α

bk

Z(ζ)dζ

≤
∫ bk+1−α+ε+τmax+τpmax

bk+1−α
Z(ζ)dζ ≤

∫ bk+1−α+ε+τmax+τpmax

bk+1−α
U(ζ)dζ

≤ U · (ε+ τmax + τpmax
).

142



Using this bound together with the trivial upper bound of F∆(θ) ≤ U during the first parts of all
long intervals as well as for all short intervals now gives us the following upper bound for the total
travel times of f :

Ξ(f)
Prop. 3.75

=

∫ Ψ(f)

0

F∆(ζ)dζ =

K∑
k=0

∫ bk+1

bk

F∆(ζ)dζ

=
∑
k∈L

∫ bk+1−α

bk

F∆(ζ)dζ +
∑
k∈L

∫ bk+1

bk+1−α
F∆(ζ)dζ +

∑
k∈S

∫ bk+1

bk

F∆(ζ)dζ

≤
∑
k∈L

U · (ε+ τmax + τpmax
) +

∑
k∈L

U · α+
∑
k∈S

U · α

≤ K · U · (ε+ τmax + τpmax
+ α) ≤ (2+γ)U

ενmin
· U ·

(∑
e∈E

(
ενmin

2νe
+ τe

)
+ 2 (ε+ τmax + τpmax

)
)
.

As this bound holds for any γ > 0, letting γ go to zero finally gets us the desired bound of

Ξ(f) ≤ U2 ·
(∑
e∈E

(
1
νe

+ 2τe
ενmin

)
+ 4

(
1

νmin
+ τmax

ενmin
+

τpmax

ενmin

))
.

Remark 6.13. If all free flow travel times and capacities are lower bounded by 1, then we can simplify
the bounds from Theorem 6.12 to

Ψ(f) ≤ θ̂ + U ·
(
|E|+ 2

∑
e∈E

τe

)
+ 1 + τmax + τpmax

and
Ξ(f) ≤ U2 ·

(
|E|+ 2

∑
e∈E

τe + 4 + 4τmax + 4τpmax

)
.

We also note that for small θ̂ the upper bound for the total travel time obtained by just multiplying
the bound for the makespan by the total flow volume U (cf. Corollary 3.76) can be better than the
above bound. However, for larger θ̂ the above bound is better and, more importantly, independent of
θ̂.

6.2. Lower Bounds
In this section we will construct networks N and corresponding IDE with large makespan and total
travel time compared to the network size τ(N ) and the total flow volume U(N ). We will do this first
for single-commodity networks and then for multi-commodity networks. To keep our notation simple,
we will only consider networks with integer free flow travel times and capacities here.

6.2.1. Single-Commodity Networks

We start with a simple example showing that for acyclic networks our bounds from Theorem 6.5 are –
in some sense – asymptotically tight:

Example 6.14. Consider a single-commodity network consisting of a single edge e of capacity νe = 1
and free flow travel time τe ≥ 1 connecting a source node s with network inflow rate us := U · 1[θ̂−1,θ̂]

for some numbers U ≥ 1, θ̂ ≥ 1 to the single sink node t (cf. Figure 34 (top left)). Then it is easy to
see that the unique Vickrey flow f gives us the following values for makespan and total travel times
(cf. Figure 34 (bottom)):

value for f upper bound from Theorem 6.5

Ψ(f) θ̂ + U + τe − 1 θ̂ + U + τe

Ξ(f) 1
2 · U

2 + (τe − 1
2 )U U2 + Uτe
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s t

θ = 0 :

U · 1[θ̂−1,θ̂]
(τe, 1)

θ = θ̂ :

s t

Qe(θ) = U − 1

θ̂ Ψ(f)

U

1 τe − 1 U

F∆

Figure 34: A one edge network with large makespan and total travel time (top left). The picture in
the top right shows the unique Vickrey flow in this network at time θ̂, i.e. at the time
where the last particle enters the network. The graph at the bottom shows the network
load for this flow over time. Thus, the area below this graph is exactly the total travel time
incurred by this flow.

Of course, this is a rather trivial example – while it almost matches our upper bounds (especially
with respect to the makespan) it is also an instance where there is no difference between the optimal
flow and an IDE as there is only a single source-sink path. We will, however, provide a different, more
interesting lower bound example for acyclic graphs later on. First, however, we will turn to general
single-commodity instances and construct a family of lower bound instances for this case.

Proof idea: The inspiration for our lower bound instances comes from our worst case analysis
in the proof of the upper bound in the previous subsection: We saw there that if we have little
inflow into the sink(s) during an extended time period (which is something we want in order to
achieve a high makespan), then a sink-like subgraph starts to grow in the network and all flow
inside this part of the subgraph leaves the network soon after. To prevent the whole flow from
terminating, we must ensure that this growth stops before the whole graph becomes sink-like.
Moreover, we want the main amount of flow to remain outside the subgraph which becomes
sink-like.
Thus, we basically want to construct a network consisting of two parts: One (closer to the

sink) which will (repeatedly) become a sink-like subgraph and one (further away from the sink)
which will contain most of the flow. The second part then is essentially a large cycle wherein
flow travels around without making any progress towards the sink while occasionally sending
some small amount of flow into the first part of the network to prevent the sink-like subgraph
from growing too large (cf. Figure 35).
Now, if we were to take this idea literally and construct a simple four edge network like

in Figure 35, we would not achieve a better bound than with the one edge instance from
Example 6.14. This is because in such a network every time the main part of the flow travels
around the main cycle we have to loose flow with volume of the same order as the length of
this cycle for diverting this flow away from the direct edges towards this sink. Thus, we have to
construct the lower part of the network more carefully so that we can use the same flow multiple
times for blocking the direct paths towards the sink. Hence, our actual lower bound instances
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will consist of two main parts: A cycling gadget and a blocking gadget.

t

cycling
part

blocking
part

Figure 35: The general structure of the network we use for the lower bound on makespan and total
travel time in single-sink networks. The upper half consists of a large cycle where most of
the flow should stay.

Theorem 6.15. There exists a family of networks NK,L and associated IDE fK,L indexed by two
natural numbers K and L such that

• The network size is asymptomatically bounded by 32K , i.e. τ(NK,L) ∈ O(32K),

• the total flow volume is asymptomatically bounded by L3K , i.e. UNK,L ∈ O(L3K),

• we have Ψ(fK,L) ≥ LK(3K + 1) and Ξ(fK,L) ≥ KL(L− 1) · 32K and

• NK,L has a single source node and a single sink node and a source,sink-path of free flow travel
time (K − 1)(3K + 1)− 5 · 3K−2 + 6. Additionally, no flow enters the network after time θ = 1.

Here, we denote for any network N by τ(N ) :=
∑
e∈E τe the sum of all free flow travel times in N

and by UN := U(θ̂) the total flow volume in N .

Proof. Fix any two natural numbers K,L ∈ N∗ with K ≥ 3. Since we will now construct the network
NK,L as well as the IDE fK,L only for those fixed values K and L, we will drop the indices K and
L from now on to keep the notation cleaner. As already indicated in Figure 35 our network will be
constructed from two parts: A cycling gadget C and a blocking gadget B. We will now build these
two gadgets separately.

The blocking gadget: The blocking gadget B is constructed inductively out of smaller versions of
itself. Its fundamental building block is the delay gadget D (cf. Figure 36): It consists of three input
nodes v1, v2 and v3, one internal node y and one output node w. Each input node is connected to y
via an edge viy with free flow travel time 1 and capacity 1. Furthermore, there is an edge yz with free
flow time 1 and capacity 1 connecting y to the output node z. We will later embedded D into a larger
network such that the only edges entering D from the outside are edges e1, e2 and e3 ending at the
input nodes v1, v2 and v3, respectively, and the only edge leaving D is edge e0 starting at the output
node z.

Claim 16. Gadget D has the following two structural properties:

(i) For any input node vi of gadget D there exists a unique vi, z-path which has a free flow travel
time of 2.

(ii) The sum of all free flow travel times in D is 4.
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v1 v2 v3

y

z

(1, 1)
(1, 1)

(1
, 1

)

(1,1)

e1 e2 e3

e0

Figure 36: The delay gadget D. Dashed edges are not part of the gadget and only indicate how this
gadget will be embedded into a larger network.

Now assume that D is correctly embedded into a larger network N . Let f be a Vickrey flow in this
network, θ some time and j ∈ N0 such that

• D carries no flow at time θ and

• the inflow into D via the edges ei during [θ, θ + 2 + 4.5 · 3j+1] satisfies

1[θ+(i−1)3j+0.5,θ+(i−1)·3j+3·3j+0.5] ≤ f−ei ≤ 1[θ+(i−1)·3j ,θ+(i−1)·3j+4.5·3j ]

(cf. Figure 37 (top)).

Then during [θ, θ + 2 + 4.5 · 3j+1] this flow exhibits the following properties inside D (cf. Figure 37
(middle and bottom)):

(iii) There are never any queues on the edges v1y, v2y and v3y.

(iv) The queue on yz grows at a rate of at most 2 during [θ, θ + 1 + 5.5 · 3j ] and does not grow after
that.

(v) The queue length on yz is upper bounded by 7 · 3j on the whole interval [θ, θ + 4.5 · 3j+1].

(vi) The queue length on yz is upper bounded by 3j − 0.5 on [θ, θ + 2 · 3j + 0.5].

(vii) The queue length on yz is lower bounded by 4 · 3j − 0.5 on [θ + 4 · 3j + 1, θ + 5 · 3j + 2].

(viii) The queue on yz is empty before time θ + 3j + 1 and after time θ + 4.5 · 3j+1 + 1.

(ix) The outflow from the gadget over edge e0 satisfies 1[θ+2.5,θ+2.5+3·3j+1] ≤ f+
e0 ≤ 1[θ+2,θ+2+4.5·3j+1].

Proof. Properties (i) and (ii) are immediately clear from the construction.
If the inflow rates into the input nodes vi never exceed the capacities of the following edges vi

(which is 1), no queues ever form on these edges. This shows (iii).
To show the remaining bounds on the flow (i.e. (iv) to (ix)) we first note that due to the monotonicity

of the edge flow dynamics (Corollary 3.23) it suffices to show that if the inflow rates into D match the
lower/upper bounds, then both the queue length function on edge yz and the outflow rate from D
matches the respective lower/upper bounds. This can be deduced directly from Figure 37 but we will
also explain it in a bit more detail here.
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f−e1

θ θ + 4.5 · 3j

1
0.5 3 · 3j 1.5 · 3j − 0.5

f−e2

θ + 3j θ + 3j + 4.5 · 3j

1
0.5 3 · 3j 1.5 · 3j − 0.5

f−e3

θ + 2 · 3j θ + 2 · 3j + 4.5 · 3j

1
0.5 3 · 3j 1.5 · 3j − 0.5

Qyz

θ + 1 + 3j θ + 1 + 4.5 · 3j θ + 1 + 4.5 · 3j+1

3j
2 · 3j
3 · 3j
4 · 3j
5 · 3j
6 · 3j
7 · 3j

f+
e0

θ + 2 θ + 2 + 4.5 · 3j+1

1
0.5 3 · 3j+1 1.5 · 3j+1 − 0.5

Figure 37: A visual depiction of the flow bounds in gadget D stated in Claim 16: If the inflow into
the gadget via edges e1, e2 and e3 is bounded by the functions given in the three graphs
at the top (red is the upper bound, green the lower bound), then the queue length on
edge yz is bounded by the functions given in the middle graph and the outflow from the
gadget via edge e0 is bounded by the functions given in the graph at the bottom. Note,
that the graphs a positioned horizontally in such a way that the time axis for the first
three graphs align while the fourth one’s is shifted by −τviy = −1 and the fifth one’s by
(τviy + τyz) = −2).

First, assume that the inflow rates into vi exactly match the upper bounds. Then flow starts
to arrive at node y at a rate of 1 at time θ + 1. This rate increases to 2 at time θ + 3j + 1 at
which point a queue starts to grow on edge yz at a rate of 1. At time θ + 2 · 3j + 1 the inflow
rate into yz increases once more to 3 and the queue (currently at length 3j) now growth at a rate
of 2. At time θ + 4.5 · 3j + 1 the inflow rate goes back to 2 and the queue (currently at length
3j + 2 · 2.5 · 3j = 6 · 3j) now only grows at a rate of 1. At time θ + 5.5 · 3j + 1 the inflow drops further
to 1 and the queue now stays at a constant length of 7 · 3j . Finally, at time θ + 6.5 · 3j + 1 the inflow
completely stops and the queue starts to deplete at a rate of 1. Thus, the queue is empty again by
time θ + 6.5 · 3j + 1 + 7 · 3j = θ + 13.5 · 3j + 1 = θ + 4.5 · 3j+1 + 1. From this, it immediately follows
that the outflow from the gadget exactly matches the given upper bound. Thus, we have shown (v),
(vi), (viii) and the upper bound in (ix). Furthermore, this also shows that after time θ + 1 + 5.5 · 3j
flow arrives at node y at a rate of at most 1. Thus, the queue on edge yz cannot grow any more after
that. As flow can never arrive at y at a rate of more than 3, the queue also never grows at a rate of
more than 2 before that time. This shows (iv).
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Now, assume that the inflow rates into vi exactly match the lower bounds. Then we can determine
the flow evolution in exactly the same way as before: Flow starts to arrive at node y at time θ + 1.5
at a rate of 1. This rate increases to 2 at time θ + 3j + 1.5 at which point a queue starts to grow on
edge yz at a rate of 1. At time θ + 2 · 3j + 1.5 the inflow rate increases once more to 2 and the queue
(currently at length 3j) now grows at a rate of 2. At time θ + 3 · 3j + 1.5 the inflow rate goes back
to 2 and the queue (currently at length 3j + 3j · 2 = 3 · 3j) now only growth at a rate of 1. At time
θ + 4 · 3j + 1.5, the inflow decreases further to 1 and the queue now remains at its current length of
3 · 3j + 3j = 4 · 3j . Finally, at time θ + 5 · 3j + 1.5 the inflow completely stops and the queue starts to
deplete (at a rate of 1). Thus, the queue is empty again at time θ+5 ·3j +1.5+4 ·3j = θ+3 ·3j+1 +1.5.
The outflow from edge yz then stops one time unit later. This shows (vii) and the lower bound in
(ix). �

We now construct the blocking gadget B as follows: For any k ∈ [K] we define Bk as follows: B1

(Figure 38) consists of three input nodes v1, v2 and v3, one output node z and three edges v1z, v2z
and v3z with free flow travel time and capacity 1. Bk for k ≥ 2 (Figure 39) is then constructed by
taking one copy of gadget Bk−1 and 3k−1 copies of gadget D and connecting the output nodes of
the latter with the input nodes of the former via edges with free flow travel time 3K − 10 · 3K−k − 1
and capacity 1. Only for k = 2 we have to make an exception and set these free flow travel time
to 1 (otherwise these edges would have a negative free flow travel time). The input nodes of the
delay-gadgets D will then be the input nodes of Bk and we rename them to v1 to v3k . The output
node z of Bk−1 will also be the output node of Bk. We will say that Bk is correctly embedded into a
larger network if the only incoming edges e1, . . . , e3k enter at its input nodes and the only outgoing
edge e0 leaves at its output node.

v1 v2 v3

z

(1, 1)
(1, 1)

(1
, 1

)

e1 e2 e3

e0

Figure 38: Gadget B1. Dashed edges are not part of the gadget and only indicate how to correctly
embed this gadget into a larger network.

Claim 17. Any gadget Bk satisfies the following structural properties:

(i) For any input node vi there exists a unique vi, z-path pki which has a free flow travel time of{
1, if k = 1

(k − 2)(3K + 1)− 5 · (3K−2 − 3K−k) + 4, if k ≥ 2
.

(ii) The sum of all free flow travel times of all edges in Bk is{
3, if k = 1
1
2 (3K + 3)(3k − 9)− 10 · (k − 2) · 3K−1 + 18 if k ≥ 2

.
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−

1
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3
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1
,1)
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(1
,1)
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k

=
2

e3k−2 e3k−1 e3k

(3
K
−

1,1
)

e0

Figure 39: Gadget Bk constructed from 3k−1 copies of the delay gadget D and one copy of gadget
Bk−1. Dashed edges are not part of the gadget and only indicate how to correctly embed
this gadget into a larger network.

Now assume that Bk is correctly embedded into a larger network. Let f be a Vickrey flow in this larger
network and θ ∈ R≥0 some time such that

• Bk carries no flow at time θ and

• the inflow into Bk via the edges ei during [θ, (k − 1) · (3K + 1)] satisfies

1[θ+(i−1)3K−k+0.5,θ+(i−1)3K−k+3·3K−k+0.5] ≤ f−ei ≤ 1[θ+(i−1)3K−k,θ+(i−1)3K−k+4.5·3K−k].

Then, for any path pki the following properties hold:

(iii) At any time in [θ, (k − 1) · (3K + 1)] there is at most one edge on pki with a non-empty queue.

(iv) The current travel time along pki never grows at a rate of more than 2 during [θ, (k−1) · (3K +1)].

(v) There are no queues on path pki before time θ + (i − 2) · 3K−k + 1 or after time θ + (i + 4) ·
3K−k + (k − 2)(3K + 1) + 8.5 · 3K−2 + 1. Moreover, all flow still on path pki at the latter time
cannot be part of any new queue on this path afterwards.
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Furthermore, for any ` ∈ [k − 1], m ∈ [3k−`] − 1 and n ∈ [3`] the waiting time along path pkm·3`+n
satisfies the following properties:

(vi) It is upper bounded by 7 · 3K−k+`−1 during [θ+ (`− 1) · (3K + 1) +m · 3K−k+` + 5 · 3K−k − 1, θ+
(`− 1) · (3K + 1) +m · 3K−k+` + 5 · 3K−k − 0.5].

(vii) It is upper bounded by 3K−k+`−1 − 0.5 during [θ + (` − 1) · (3K + 1) + (m − 1) · 3K−k+` + 5 ·
3K−k, θ + (`− 1) · (3K + 1) + (m− 1) · 3K−k+` + 5 · 3K−k + 0.5].

(viii) It is lower bounded by 4 · 3K−k+`−1− 0.5 during [θ+ (`− 1) · (3K + 1) +m · 3K−k+` + 5 · 3K−k, θ+
(`− 1) · (3K + 1) +m · 3K−k+` + 5 · 3K−k + 0.5].

Proof. We show this claim by induction on k:

Base Case (k = 1): In this case properties (i) and (ii) are directly clear from the construction while
properties (vi) to (viii) are trivially true as [k − 1] = [0] is the empty set. Finally, properties (iii)
to (v) hold because there are never any queues in B1.

Induction Step (k − 1→ k): Properties (i) and (ii) again follow from the construction of Bk:

(i) For any node vi there exists the following unique vi, z-path pki : First through one of the
copies of gadget D (free flow travel time 2 by Claim 16(i)), then over a connecting edge
to one of the input nodes of Bk−1 and from there the unique path pk−1

di/3e towards z which
exists by induction.

If k = 2 this path pki has a free flow travel time of 2 + 1 + 1 = 4 while for k ≥ 3 it has a
free flow travel time of

2 + 3K − 10 · 3K−k − 1 + (k − 3)(3K + 1)− 5 · (3K−2 − 3K−k+1) + 4

= (k − 2)(3K + 1)− 5 · (3K−2 − 3K−k) + 4

where we used induction to get the free flow travel time for the part of pki in Bk−1.

(ii) Similarly, using Claim 16(ii) and induction we get for the sum of all free flow travel times

3k−1 · (4 + 3K − 10 · 3K−k − 1) + 1
2 (3K + 3)(3k−1 − 9)− 10 · (k − 3) · 3K−1 + 18

= 3k−1 · (3K + 3)− 10 · 3K−1 + 1
2 (3K + 3)(3k−1 − 9)− 10 · (k − 3) · 3K−1 + 18

= 1
2 (3K + 3)(2 · 3k−1 + 3k−1 − 9)− 10 · (k − 2) · 3K−1 + 18

= 1
2 (3K + 3)(3k − 9)− 10 · (k − 2) · 3K−1 + 18

if k ≥ 3 and 3 + 3 + 3 · 4 = 18 if k = 2.

For the remaining properties, we first observe that the gadget Bk−1 as well as all copies of
D used to construct gadget Bk are correctly embedded in the larger network. Now, for any
m = 0, 1, . . . , 3k−1 − 1 the edges e3m+1, e3m+2 and e3m+3 all enter the (m + 1)-th copy of
gadget D and carry flow matching exactly the properties of the inflow used in Claim 16 with
θ = θ +m · 3K−k+1 and j = K − k. Thus, all the properties from Claim 16 hold for all copies
of D. In particular, Claim 16(ix) ensures that the inflow rate into the connecting edge e from
Dm+1 to Bk−1 satisfies

1[θ+m·3K−k+1+2.5,θ+m·3K−k+1+2.5+3·3K−k+1] ≤ f+
e ≤ 1[θ+m·3K−k+1+2,θ+m·3K−k+1+2+4.5·3K−k+1].

(53)

If k ≥ 3, then the connecting edge from Dm+1 to Bk−1 has a free flow travel time of 3K − 10 ·
3K−k − 1 ≥ 1 and, thus, its outflow rate satisfies

1[θ′+m·3K−k+1+0.5,θ′+m·3K−k+1+0.5+3·3K−k+1] ≤ f−e ≤ 1[θ′+m·3K−k+1,θ′+m·3K−k+1+4.5·3K−k+1].

(54)
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with θ′ := θ + 3K − 10 · 3K−k + 1. As this edge leads towards the (m + 1)-th input node of
Bk−1, this shows that the inflow into gadget Bk−1 satisfies the bounds for the flow in Claim 17
(for k − 1 instead of k and θ′ instead of θ). Thus, all the properties from Claim 17 already
hold in Bk−1 by induction. Note, that this conclusion is also true in the case k = 2 since no
queues ever form in Bk−1 = B1 and properties (vi) to (viii) are trivially true for Bk−1 as we
have [k − 1− 1] = [0] = ∅ then.
Now, for k ≥ 2 let pk3`m+n with ` ∈ [k − 1], m ∈ [3k−`] − 1 and n ∈ [3`] be any path in BK .
Then we can split this path in three subpaths: A first part in Dm+1, a second part which is
just the connecting edge from Dm+1 to Bk−1 and a third path in Bk−1. We note that this
third part then also has the name pk−1

3`−1m+n′
where n′ =

⌈
n
3

⌉
∈ [3`−1]. Moreover, we know

from Claim 16(iii) and (viii) that there is no queue on the first part of path pk3`m+n after time
θ+m · 3K−k+1 + 4.5 · 3K−k+1 + 1 and from property (v) for Bk−1 that there is no queue on the
third part (i.e. pk−1

3`−1m+n′
) before time θ′+(3`−1m+n′−2) ·3K−k+1 +1. Finally, by construction

there is never a queue on the middle part (i.e. the connecting edge).

With these observations we can now show the remaining properties for Bk:

(iii) For k = 2 this follows directly from Claim 16(iii) as there can never be any queues in B1.

For k ≥ 2 take any path pk3m+n with m ∈ [3k−1]− 1, n ∈ [3]. By our previous observations
it then suffices to show that the queue in Dm+1 depletes before the first queue forms on
pk−1
m+1. This is in fact true since we have

θ +m · 3K−k+1 + 4.5 · 3K−k+1 + 1

= θ + (m− 1) · 3K−k+1 + 5.5 · 3K−k+1 + 1

= θ + (m− 1) · 3K−k+1 + 16.5 · 3K−k + 1

≤ θ + (m− 1) · 3K−k+1 + 27 · 3K−k − 10 · 3K−k + 1

= θ + 3K−k+3 − 10 · 3K−k + 1 + (m− 1) · 3K−k+1

(∗)
≤ θ + 3K − 10 · 3K−k + 1 + (m− 1) · 3K−k+1 + 1

= θ′ + (m− 1) · 3K−k+1 + 1

where we use k ≥ 3 at (∗). This shows that property (iii) holds for Bk.

(iv) We know from Claim 16(iv) that the waiting time inside any copy of D never grows at
a higher rate than 2. Because of property (iv) for Bk−1 the same is true inside Bk−1.
Together with (iii) this shows that (iv) holds for Bk as well.

(v) As we have already shown that the first queue on any path pk3m+n forms inside Dm+1 we can
deduce from Claim 16(viii) that this does not happen before time θ+m·3K−k+1+3K−k+1 =
θ + (3m+ 1) · 3K−k ≥ θ + (3m+ n− 2) · 3K−k.
If k = 2, this is also the last queue and by Claim 16(viii) it is empty by time θ+m ·3K−2+1 +
4.5 · 3K−2+1 + 1 = θ+ (3m+ 5) · 3K−2 + 8.5 · 3K−2 ≤ θ+ (3m+n+ 4) · 3K−2 + 8.5 · 3K−2 + 1.
If, on the other hand, we have k ≥ 3, then the last queue on pk3m+n is in Bk−1 and, by
induction, is empty by time

θ′ + (m+ 1 + 4) · 3K−k+1 + (k − 3)(3K + 1) + 8.5 · 3K−2 + 1

= θ + 3K − 10 · 3K−k + 1 + (3m+ 15) · 3K−k + (k − 3)(3K + 1) + 8.5 · 3K−2 + 1

= θ + (3m+ 1 + 4) · 3K−k + (k − 2)(3K + 1) + 8.5 · 3K−k + 1

≤ θ + (3m+ n+ 4) · 3K−k + (k − 2)(3K + 1) + 8.5 · 3K−k + 1.

This shows property (v)

(vi) For ` = 1 the queue on path pk3m+n in Dm+1 is upper bounded by 7 · 3K−k during
[θ+m ·3K−k+1, θ+m ·3K−k+1 + 4.5 ·3K−k+1] according to Claim 16(v). Since we certainly
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have 4.5 · 3K−k+1 ≥ 5 · 3K−k− 0.5, this interval, in particular, includes [θ+m · 3K−k+1 + 5 ·
3K−k − 1, θ +m · 3K−k+1 + 5 · 3K−k − 0.5]. Thus, the desired lower bound on the waiting
time along pk3m+n holds, provided that there are no other queues on later parts of the
path during this time. If k = 2, this is immediately clear as there are never any queues in
B1. Otherwise this follows from our observation that there are no queues on pk−1

m+1 before
θ′ + (m− 1) · 3K−k+1 + 1 and we have

θ′ + (m− 1) · 3K−k+1 + 1 = θ + 3K + 1− 10 · 3K−k + (m− 1) · 3K−k+1 + 1

= θ +m · 3K−k+1 + (3k − 10− 3) · 3K−k + 2

(∗)
≥ θ +m · 3K−k+1 + 5 · 3K−k − 0.5,

where we use k ≥ 3 at (∗).
For ` ≥ 2 we have

θ + (`− 1)(3K + 1) +m · 3K−k+` + 5 · 3K−k − 1

≥ θ +m · 3K−k+` + 3K + 1 + 5 · 3K−k − 1

= θ +m · 3K−k+1 + (3k + 5) · 3K−k

(#)

≥ θ +m · 3K−k+1 + 13.5 · 3K−k + 1

≥ θ +m · 3K−k+1 + 4.5 · 3K−k+1 + 1,

where we use k > ` ≥ 2 at (#). Hence, the only queues on path pk3`m+n during the relevant
intervals are in Bk−1, i.e. on the subpath pk−1

m3`−1+n′
. By induction the total waiting time

on this path is upper bounded by 7 · 3K−(k−1)+(`−1)−1 during [θ′ + (`− 2) · (3K + 1) +m ·
3K−k+` + 5 · 3K−k+1 − 1, θ′ + (`− 2) · (3K + 1) +m · 3K−k+` + 5 · 3K−k+1 − 0.5]. Since

θ′ + (`− 2) · (3K + 1) +m · 3K−k+` + 5 · 3K−k+1

= θ + 3K + 1− 10 · 3K−k + (`− 2) · (3K + 1) +m · 3K−k+` + 5 · 3K−k+1

= θ + (`− 1)(3K + 1) +m · 3K−k+` + 5 · 3K−k,

this shows that property (vi) holds for Bk.

(vii) This can be proven in essentially the same way as the previous bound – only using
Claim 16(vi) instead of Claim 16(v) for the upper bound in D. For ` = 1 the queue on path
pk3m+n in Dm+1 is upper bounded by 3K−k − 0.5 during [θ +m · 3K−k+1, θ +m · 3K−k+1 +
2 · 3K−k + 0.5] according to Claim 16(vi). Since we have

(m− 1) · 3K−k+1 + 5 · 3K−k = m · 3K−k+1 − 3 · 3K−k + 5 · 3K−k = m · 3K−k+1 + 2 · 3K−k,

this interval, in particular, includes [θ+ (m− 1) · 3K−k+1 + 5 · 3K−k, θ+ (m− 1) · 3K−k+1 +
5 · 3K−k + 0.5]. Thus, the desired lower bound on the waiting time along pk3m+n holds,
provided that there are no other queues on later parts of the path during this time. If
k = 2, this is immediately clear as there are never any queues in B1. Otherwise this follows
from our observation that there are no queues on pk−1

m+1 before θ′ + (m− 1) · 3K−k+1 + 1
and we have

θ′ + (m− 1) · 3K−k+1 + 1 = θ + 3K + 1− 10 · 3K−k + (m− 1) · 3K−k+1 + 1

= θ + (m− 1) · 3K−k+1 + (3k − 10) · 3K−k + 2

(∗)
≥ θ + (m− 1) · 3K−k+1 + 5 · 3K−k + 0.5,

where we use k ≥ 3 at (∗).
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For ` ≥ 2 we have

θ + (`− 1)(3K + 1) + (m− 1)3K−k+` + 5 · 3K−k

≥ θ +m · 3K−k+` + 3K + 1− 3K−k+` + 5 · 3K−k

≥ θ +m · 3K−k+1 + (3k − 3` + 5) · 3K−k + 1

(#)

≥ θ +m · 3K−k+1 + 23 · 3K−k + 1

≥ θ +m · 3K−k+1 + 4.5 · 3K−k+1 + 1,

where we use k > ` ≥ 2 at (#). Hence, the only queues on path pk3`m+n during the relevant
intervals are in Bk−1, i.e. on the subpath pk−1

m3`−1+n′
. By induction the total waiting time

on this path is upper bounded by 3K−(k−1)+(`−1)−1 − 0.5 during [θ′ + (`− 2) · (3K + 1) +
(m− 1) · 3K−k+` + 5 · 3K−k+1, θ′ + (`− 2) · (3K + 1) + (m− 1) · 3K−k+` + 5 · 3K−k+1 + 0.5].
Since

θ′ + (`− 2) · (3K + 1) + (m− 1) · 3K−k+` + 5 · 3K−k+1

= θ + 3K + 1− 10 · 3K−k + (`− 2) · (3K + 1) + (m− 1) · 3K−k+` + 5 · 3K−k+1

= θ + (`− 1)(3K + 1) + (m− 1) · 3K−k+` + 5 · 3K−k,

this shows that property (vii) holds for Bk.

(viii) For ` = 1 the queue on path pk3m+n in Dm+1 is lower bounded by 4 · 3K−k − 0.5 during
[θ +m · 3K−k+1 + 5 · 3K−k, θ +m · 3K−k+1 + 5 · 3K−k + 0.5] according to Claim 16(vii).

For ` ≥ 2 we can use property (viii) for Bk−1 to get a lower bound on the waiting time
on pk−1

3`−1m+n′
of 4 · 3K−(k−1)+(`−1)+1 − 0.5 during [θ′ + (`− 2)(3K + 1) +m · 3K−k+` + 5 ·

3K−k+1, θ′ + (`− 2)(3K + 1) +m · 3K−k+` + 5 · 3K−k+1 + 0.5]. Since

θ′ + (`− 2)(3K + 1) +m · 3K−k+` + 5 · 3K−k+1

= θ + 3K + 1− 10 · 3K−k + (`− 2)(3K + 1) +m · 3K−k+` + 5 · 3K−k+1

= θ + (`− 1)(3K + 1) +m · 3K−k+` + 5 · 3K−k

this shows property (viii) for Bk. �

The Cycling Gadget: Next, we construct the cycling gadget C. The basic building block of this
gadget is the injection gadget I (Figure 40) consisting of three node v, w and z and two edges: vw
with free flow travel time 1 and capacity 3 and wz with free flow time 1 and capacity 1. This gadget
will be embedded into a larger network in such a way that there are incoming and outgoing edges of
equal capacity at node v and one more outgoing edge at node z leading towards the sink via some
path p. Furthermore, one of the outgoing edges from v (which we will call e′) has free flow travel
time 1 and leads to some node v′ from which a path p′ leads towards the sink t. Finally, the free flow
travel time along the paths p and p′ is such that vw,wz, p is the shortest v, t-path and has the same
(physical) length as p′. Every path starting with another edge leaving v has strictly longer free flow
travel time.

Claim 18. Gadget I satisfies the following property:

(i) The sum of all free flow travel times of all edges in I is 2

Now assume that I is correctly embedded into a larger network. Let f be any IDE in the larger network,
θ ∈ R≥0 some time and β̄ ≥ β > 9 and 0 ≤ α ≤ 1

2 −
3

β−3 positive real numbers such that

• gadget I and edge e′ carry no flow at time θ,

• paths p and p′ have no queues during [θ, θ + 6.5] and
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1
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Figure 40: The injection gadget I. Dashed edges are not part of the gadget and only indicate its
correct embedding into a larger network. The graphs depict the upper and lower bounds
on the flow from Claim 18: The graphs on the left show (from top to bottom) the bounds
for the inflow into node v, the inflow into node w and the inflow into path p. Similarly
to Figure 37 the graphs are position horizontally in such a way that the time axis of the
middle graph is shifted by −1 and the one of the bottom graph by −2. The graph on the
right shows the bounds for the inflow into edge e′.

• the only inflow into node v during this time interval is over edge e and satisfies

β · 1[θ+α,θ+0.5] ≤ f−e ≤ β̄ · 1[θ,θ+0.5].

Then the flow splits at v between e′ and vw in such a way that during [θ, θ + 6.5] the outflow from
gadget I satisfies

(ii) (β − 3) · 1
[θ+α+

3
β−3 ,θ+0.5]

≤ f+
e′ ≤ β̄ · 1[θ,θ+0.5] and

(iii) 1[θ+2+α,θ+6.5−2α] ≤ f+
p ≤ 1[θ+2,θ+6.5] (where we use f+

p to denote the inflow into the first edge
of path p).

(iv) Moreover, the gadget is empty by time θ + 6.5.

Proof. Property (i) is immediately clear from the construction as gadget I contains only two edges,
both with free flow travel time 1.

To show the bounds on the outflow rates (i.e. (ii) to (iv)) we start with the case that the inflow into
node v (i.e. f−e ) exactly matches the lower bound. In this case the first particles arrive at node v at
time θ + α. At this time, edge vw is the only active edge starting at v (as the path vw,wz, p is at
least one shorter than any other v, t-path and we have no queues on p). Thus, at first all flow arriving
at v enters the edge vw and a queue starts to grow at a rate of β − 3. At time θ + α+ 3

β−3 ≤ θ + 0.5

the queue on edge vw reaches a length of 3 and, hence, edge e′ becomes active as well (as the free
flow travel time along e′, p′ is exactly one more than along vw,wz, p and there is also no queue on
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p′). From here on the flow enters edge vw at a rate of 3 (to keep the queue length constant) and
edge e′ at a rate of β − 3. This already shows f+

e′ = (β − 3) · 1[θ+α+ 3
β−3 ,θ+0.5] on the relevant interval.

Furthermore, the outflow of edge vw is described by f+
vw = 3 · 1[θ+1+α,θ+2.5] (note that at time θ+ 0.5

the inflow into edge vw stops with a queue of length 3). From this, it immediately follows that we
have f+

p = f−wz = 1[θ+2+α,θ+6.5−2α].
Choosing α = 0 and β = β̄ now immediately implies that the outflow rates are upper bounded by

the stated upper bounds if the inflow rate into node v matches the given upper bound. The bounds
then also hold for all other inflow rates (obeying the stated bounds) due to the monotonicity of the
edge flow dynamics (cf. Corollary 3.23). �

Additionally, we need another gadget of very similar form which we will call redirect gadget R.
This gadget consists of two nodes v and z connected by an edge of free flow travel time and capacity
1. The gadget will be embedded into a larger network in such a way that there are incoming edges
and one outgoing edge of equal capacity at node v and one more outgoing edge from node z leading
towards the sink via a unique path p. Furthermore, the outgoing edge from v (which we will denote
by e′) has free flow time 1 and leads to some node v′ from which there exists a path p′ towards the
sink. This path has the exact same free flow travel time as vw, p.

v

z

v′

t

(1
,1)

e e′

p′

p

f−e

θ θ + 0.5

β

β̄

α

f+
e′

θ θ + 0.5

β − 3

β̄

α+ 1+γ
β−1

Figure 41: The redirect gadget R. Dashed edges are not part of the gadget and only indicate how
to embedded this gadget into a larger network. The graphs depict the upper and lower
bounds on the flow from Claim 19 for the outflow rate from edge e (left) and the inflow
rate into edge e′ (right).

Claim 19. Gadget R satisfies the following structural property:

(i) The sum of all free flow travel times of all edges in R is 1

Now assume that R is correctly embedded into a larger network. Let f be some IDE in the larger
network, θ ∈ R≥0 some time and β̄ ≥ β ≥ 3, γ ≥ 0 and 0 ≤ α ≤ 0.5− 1+γ

β−1 positive real numbers such
that

• gadget R and edge e′ carry no flow at some time θ,

155



• the only inflow into the gadget during [θ, θ + 0.5] arrives over one edge e ∈ δ−(v) and satisfies

β · 1[θ+α,θ+0.5] ≤ f−e ≤ β̄ · 1[θ,θ+0.5],

• the waiting time along path p′ is at most γ during all times in [θ, θ + 0.5] and

• the waiting time along any v′, t-path not containing v never grows at a rate of more than 2
during this interval.

Then the flow splits at v in such a way between vz and e′ that the inflow into edge e′ satisfies

(ii) (β − 3) · 1
[θ+α+

1+γ
β−1 ,θ+0.5]

≤ f+
e′ ≤ β̄ · 1[θ,θ+0.5].

Proof. Property (i) follows directly from the construction. The upper bound in (ii) follows by flow
conservation at node v. Due to the monotonicity of the edge flow dynamics it, therefore, suffices to
show that the lower bound holds if the outflow from edge e exactly matches the given lower bound.
So, assume that this is the case. Then flow starts to arrive at node v at a rate of β at time θ + α. At
first all this flow enters edge vz and a queue starts to grow there at a rate of β − 1. This continues
until edge e′ becomes active. Since the free flow travel time along the path e′, p′ is exactly one more
than along vz, p and the total waiting time along the former path is at most γ, this happens at the
latest at time θ+α+ γ+1

β−1 ≤ θ+ 0.5 (at which point the queue on edge vz would have reached a length
of γ + 1). Since no queue ever forms on edge e′ and the waiting time along any v′, t-path grows at
most at a rate of 2, the queue on edge vz can grow at most at this rate as well after this time. Thus,
flow enters edge vz at a rate of at most 3 after time θ + α+ γ+1

β−1 and, consequently, into edge e′ at a
rate of at least β − 3. Thus, the lower bound from (ii) holds as well. �

From this we construct the cycling gadget C as follows (cf. Figure 42): We take 3K copies of the
injection gadget I and one copy of the redirect gadget R. We rename the input nodes of the injection
gadgets such that the input node of the i-th injection gadget Ii is called vi and refer to the input
node of the redirect gadget both by v0 and v3K+1. We then connect them as follows: For ` ∈ [K]− 1
and m ∈ [3K−`] − 1 we add and edge of free flow travel time 3` and capacity 2U from v3`m+1 to
v3`(m+1)+1. Additionally, there is one edge v0v1 of free flow travel time 1 and capacity 2U . Here, we
define U := 1

2 (6L · 3K+1 + 3K + L).
Finally, we get our complete network NK,L by combining one cycling gadget C and one blocking

gadget BK in the following way (cf. Figure 43): For every i ∈ [3K ] we connect the output node
of the i-th injection gadget in C with the i-th input node of gadget BK via a direct edge ei with
free flow travel time 3K − 6 and capacity 1. We add an additional node t and add one edge of free
flow travel time 1 and capacity 3 from the output node of BK to t and one edge of free flow travel
time (K − 1)(3K + 1) − 5 · 3K−2 + 4 and capacity 1 from the output node of gadget R in C to t.
Finally, we make t the only sink node in NK,L and v0 the only node with a non-zero network inflow
rate which we define as 2U · 1[0,0.5].

Claim 20. The network NK,L then satisfies the following structural properties:

(i) For any i ∈ [3K ] there exists a unique path pi connecting the output node of the i-th copy of gadget
I to the sink node t. The free flow travel time along this path is (K − 1)(3K + 1)− 5 · 3K−2 + 3.

(ii) Gadgets BK , R and all copies of gadget I are embedded correctly in the network.

(iii) The sum of all free flow travel times in NK,L is

τ(NK,L) = 3
2 · 3

2K + (2K − 8) · 3K + (55− 30K) · 3K−2 +K + 21
2 .

Now, let (f, θ) be a partial IDE in NK,L and α, β ∈ R≥0 two constants such that

• the constants satisfy β ≥ (5L+ 1)3K+1 + 3K and α ≤ 0.5− 1
2L ,
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Figure 42: The cycling gadget C.

• at time θ the only edge in C carrying flow is one edge e ∈ δ−(v0),

• the inflow into node v0 (via this edge e) during the interval [θ, θ + 1] satisfies

β · 1[θ+α,θ+0.5] ≤ f−e ≤ 2U · 1[θ,θ+0.5],

• edge e is empty by time θ + 1 and

• in any extension of (f, θ) as a Vickrey flow any flow currently on the (unique) path from the
i-th injection gadget to t for some i ∈ [3K ] will not be part of any queues after time θ + (i− 1).

Then we can extend (f, θ) to a partial IDE up to time θ+K ·(3K +1) satisfying the following properties:

(iv) At time θ + K · (3K + 1) the only edge in C carrying flow is one edge e ∈ δ−(v0). Moreover,
in any further extension of (f, θ + K · (3K + 1)) as a Vickrey flow any flow currently on the
(unique) path from the i-th injection gadget to t for some i ∈ [3K ] will not be part of any queues
after time θ +K · (3K + 1) + (i− 1). Finally, edge e is empty by time θ +K · (3K + 1) + 1.

(v) The inflow into node v0 (via edge e) satisfies

(β−3(3K+K))·1
[θ+K·(3K+1)+α+

1
2L−ε,θ+K·(3

K+1)+0.5]
≤ f−e ≤ 2U ·1[θ+K·(3K+1),θ+K·(3K+1)+0.5]

during the interval [θ +K · (3K + 1), θ +K · (3K + 1) + 1] for some ε > 0.

Proof. By construction the output node of any injection gadget Ii has exactly one outgoing edge ei
which connects it to the i-th input node of BK . By Claim 17(i) there is then a unique path pKi to the
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Figure 43: The complete network NK,L constructed for the proof of Theorem 6.15

output node of BK from where there is a single edge leading directly to the sink. The free flow travel
time of this path (which we will denote by pi) is then

3K − 6 + (K − 2)(3K + 1)− 5 · (3K−2 − 1) + 4 + 1 = (K − 1)(3K + 1)− 5 · 3K−2 + 3.

This shows property (i).
With this it follows directly from the construction of NK,L that all used gadget are embedded

correctly, i.e. property (ii) is satisfied as well.
To get the sum of all free flow travel times in NK,L we first calculate this sum in gadget C (using
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Claim 18(i) and Claim 19(i)):

3K · 2 + 1 + 1 +

K−1∑
`=0

3K−` · 3` = (2 +K) · 3K + 2.

Adding the sum of free flow travel times in BK from Claim 17(ii) and the free flow travel times of the
additional edges outside the two gadget C and BK we get

τ(NK,L) = (2 +K) · 3K + 2 + 1
2 (3K + 3)(3K − 9)− 10 · (K − 2) · 3K−1 + 18

+ 3K · (3K − 6) + (K − 1)(3K + 1)− 5 · 3K−2 + 4 + 1

= 3
2 · 3

2K + (2K − 8) · 3K + (55− 30K) · 3K−2 +K + 21
2 .

Thus, property (iii) holds as well.
Now, let (f, θ) be a partial IDE satisfying the assumptions in the claim. We construct the extension

in K phases. First, there is a charging phase during which the main flow volume traverses once
through the cycling gadget C sending a small amount of flow towards the blocking gadget BK at
every injection gadget I. This is then followed by K − 1 blocking phases during which the flow inside
gadget BK creates a sequence of increasing and decreasing waiting times on the paths pi towards the
sink which let the main amount of flow traverse the cycling gadget without loosing any additional flow
(except for at the redirection gadget R). We now describe the extension in more detail and show that
it is an IDE satisfying the required properties:

Charging phase: Here, we can use any extension of (f, θ) to a partial IDE up to time θ + 3K + 1.
Any such extension then has the following form: Since the assumptions on (f, θ) guarantee,
in particular, that there is no waiting time on p1 during [θ, θ + 1], we can apply Claim 19(ii)5
(with v′ = v1) to deduce that the flow will arrive at node v1 at a rate bounded by (β − 3) ·
1

[θ+1+α+
1

β−1 ,θ+1.5]
≤ f+

e′ ≤ 2U ·1[θ,θ+0.5]. Now, iteratively applying Claim 18 (together with our

assumption guaranteeing that there is no waiting time on path pi during [θ+(i−1), θ+(i−1)+6.5])
shows that the flow will then travel from one injection gadget to the next, eventually arriving back
at node v0 at a rate bounded by β′ ·1[θ′+α′,θ′+0.5] ≤ f+

e′ ≤ 2U ·1[θ′,θ′+0.5] where θ′ = θ+ 3K + 1,

α′ := α+ 1
β−1 +

∑3K

i=1
3

β−3−3i and β
′ := β−3(1+3K). These bounds (with appropriate time shift)

than also hold at every intermediate node vi and, thus, Claim 18(iii) guarantees that the inflow
into edge ei connecting C and BK is bounded by 1[θ+i+2+α′,θ+i+6.5−2α′] ≤ f+

ei ≤ 1[θ+i+2,θ+i+6.5].
This flow then arrives 3K − 6 time units later at the i-th input node of the blocking gadget BK .
Thus, the inflow into BK satisfies the assumptions of Claim 17 with θ = θ + 3 + 3K − 6 and
k = K. Thus, during [θ + 3K − 3, θ +K · (3K + 1)] the flow inside BK satisfies the properties
(iv) to (viii) from Claim 17 (with k = K and a time shift of 3K − 3), provided that there is no
additional inflow into BK . We will construct such an extension in the following blocking phases.

Blocking phases: We inductively construct K − 1 blocking phases of length 3K + 1 each: At the
beginning of the first blocking phase at time θ′ = θ+ 3K + 1 we know from the previous charging
phase that flow arrives at node v0 via edge v3Kv0 at a rate bounded by β′ ·1[θ′+α′,θ′+0.5] ≤ f+

e′ ≤
2U ·1[θ′,θ′+0.5]. As the waiting time on path p1 is bounded by 7 ·30 = 7 according to Claim 17(vi)
and grows at a rate of at most 2 according to Claim 17(iv), we can apply Claim 19(ii) to ensure
that in any IDE extension flow splits in gadget R in such a way as to arrive at node v1 one
time unit later at a rate bounded by (β′− 3) ·1

[θ′+1+α′+
8

β′−1 ,θ
′+1.5]

≤ f+
v0v1
≤ 2U ·1[θ′+1,θ′+1.5].

Since during

[θ′ + 1, θ′ + 1.5] = [θ + 3K + 2, θ + 3K + 2.5] = [θ + 3K − 3 + 5, θ + 3K − 3 + 5 + 0.5]

the waiting time on path p1 is at least 3.5 (according to Claim 17(viii)) while the waiting
time is at most 0.5 on path p4 (according to Claim 17(vii)), sending all this flow along edge

5Note that we have not checked the requirements on α and β yet. We will do that for all application of both Claims 18
and 19 all at once at the end of the proof.
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v1v4 satisfies the IDE property. This pattern then continues, i.e. we can send all the flow
along the path v1, v4, v7, . . . , v3K+1 = v0 until it arrives back at v0 at a rate bounded by
(β′ − 3) · 1

[θ′+3K+1+α′+
8

β′−1 ,θ
′+3K+1.5]

≤ f+
v3K−2v0

≤ 2U · 1[θ′+3K+1,θ′+3K+1+0.5].

Now, for ` = 2, 3, . . . ,K − 1 we can assume (by induction) that flow arrives at node v0 via
some edge e ∈ δ−(v0) at a rate bounded by β` · 1[θ`+α`,θ`+0.5] ≤ f+

e ≤ 2U · 1[θ`,θ`+0.5] where
θ` := θ′ + (`− 1)(3K + 1), α` := α′ +

∑`
j=2

1+7·3j−2

β′−3(j−2)−1 and β` := β′ − 3(`− 1) while the rest
of gadget C as well as all connecting edges ei are empty at time θ` and no additional flow has
entered the blocking gadget after the flow send towards it during the blocking phase. Note that
we have just shown this to be true for ` = 2. Then, according to Claim 17(iv) and (vi) the
waiting time on p1 is at most 7 · 3`−1 and grows at a rate of at most 2 during

[θ`, θ` + 0.5] = [θ′ + (`− 1)(3K + 1), θ′ + (`− 1)(3K + 1) + 0.5]

= [θ + 3K + 1 + (`− 1)(3K + 1), θ + 3K + 1 + (`− 1)(3K + 1) + 0.5]

= [θ + 3K − 3 + (`− 1)(3K + 1) + 4, θ + 3K − 3 + (`− 1)(3K + 1) + 4.5].

Thus, we can apply Claim 19(ii) to ensure that in any IDE extension flow splits in gadget R in such
a way as to arrive at node v1 one time unit later at a rate bounded by β`+1 ·1[θ`+1+α`+1,θ`+1.5] ≤
f+
e ≤ 2U ·1[θ`+1,θ`+1.5]. Here, we use α`+ 1+7·3`−1

β`−1 = α`+1. Now, by the time this flow arrives at
node v1 the waiting time on path p1 is at least 4 ·3`−1−0.5 (according to Claim 17(viii)) while the
waiting time is at most 3`−1−0.5 on path p3`+1 (according to Claim 17(vii)). Thus, sending all this
flow along edge v1v3`+1 satisfies the IDE property. This pattern then continues (see Figure 44),
i.e. we can send all the flow along the path v1, v3`+1, v2·3`+1, . . . , v3K+1 = v0 until it arrives back
at v0 at a rate bounded by β`+1 · 1[θ`+3K+1+α`+1,θ`+3K+1.5] ≤ f+

e ≤ 2U · 1[θ`+3K+1,θ`+3K+1.5]

and, therefore, satisfying our assumption for the next blocking phase `+ 1.

3`−1
2 · 3`−1
3 · 3`−1
4 · 3`−1
5 · 3`−1
6 · 3`−1
7 · 3`−1

[θ` + 1, θ` + 1.5]

[θ` + 1 + 3`, θ` + 1.5 + 3`]

Figure 44: The upper and lower bounds on the waiting times along consecutive paths p1, p3`+1 and so
on during the `-th blocking phase.

After the final blocking phase (i.e. at time θK = θ +K · (3K + 1)) flow then arrives at node v0 at a
rate bounded by βK · 1[θK+αK ,θK+0.5] ≤ f+

e ≤ 2U · 1[θK ,θK+0.5] for some edge e ∈ δ−(v). Moreover,
all other edges in C as well as all connecting edges ei carry no flow at that time. Finally, according to
Claim 17(v) the flow currently on any path pi will not be part of any queues after time

θ + 3K − 3 + (i+ 4) + (K − 2)(3K + 1) + 8.5 · 3K−2 + 1

= θ + (3K + 1) + (K − 2)(3K + 1) + (9 · 3K−2 + 1) + i− 0.5 · 3K−2

≤ θ +K · (3K + 1) + (i− 1)

where we use K ≥ 3 for the last inequality. This shows that our extension satisfies property (iv). To
show that property (v) holds as well, we observe that

βK = β′ − 3(K − 1) = β − 3(3K + 1)− 3(K − 1) = β − 3(3K +K)
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and

αK = α′ +

K∑
j=2

1 + 7 · 3j−2

β′ − 3(j − 2)− 1
= α+

1

β − 1
+

3K∑
i=1

3

β − 3− 3i
+

K∑
j=2

1 + 7 · 3j−2

β − 3(3K + 1)− 3(j − 2)− 1

≤ α+
1

β − 1
+

3K∑
i=1

3

β − 3− 3K+1
+

K∑
j=2

8 · 3j−2

β − 3K+1 − 3K

= α+
1

β − 1
+

3K+1

β − 3− 3K+1
+

4 · (3K−1 − 1)

β − 3K+1 − 3K

≤ α+
1 + 3K+1 + 4 · 3K−1 − 4

5L · 3K+1
= α+

2.5 · 3K+1 − 9.5 · 3K−1 − 3

5L · 3K+1
≤ α+

1

2L
− 9.5

45L
< α+

1

2L
.

Finally, this then also allows us to show that at every time in the above proof where we applied
Claim 18 or Claim 19, the required bounds on α and β for the flow arriving at the respective input
node vi were satisfied: Since those values are always lower bounded by αK and βK it suffices to show
the requirements for those: Indeed, we have

βK = β − 3(3K +K) ≥ (5L+ 1)3K+1 + 3K − 3(3K +K) = 5L · 3K+1 ≥ 9

as well as

αK +
3

βK − 3
≤ α+

1

2L
− 9.5

45L
+

3

5L · 3K+1 − 3
≤ α+

1

2L
+

27− 9.5(3K+1 − 1)

45L(3K+1 − 1)
≤ α+

1

2L
≤ 0.5

and, finally,

αK +
1 + γ

βK − 1
≤ α+

1

2L
− 9.5

45L
+

1 + 7 · 3K−1

5L · 3K+1 − 1

≤ α+
1

2L
+

9 + 7 · 3K+1 − 9.5 · (3K+1 − 1)

45L · (3K+1 − 1)
≤ α+

1

2L
≤ 0.5,

which concludes our proof. �

We now construct an IDE with the desired makespan and total travel time as follows: We start
with the zero-flow up to time 0 (0, 0) which clearly satisfies the assumptions on the given partial
IDE in Claim 20 (except that the inflow into node v0 does not arrive via some edge e ∈ δ−(v0) but
instead as network inflow – however, this clearly does not change anything). We can, therefore, apply
Claim 20 to get a partial IDE until time K · (3K + 1) which again satisfies the assumptions of this
claim on the given partial IDE. Thus, we can iteratively apply this claim until, after L extensions, we
have a partial IDE (f, LK · (3K + 1)) which still has not terminated (as flow still arrives at least at a
rate of 2U − 3L(3K +K)) = 6L · 3K+1 + 3K + L− 3L(3K +K) = 5L · 3K+1 + L > 0 during at least
the interval [LK · (3K + 1) + L

2L − ε, LK · (3
K + 1) + 0.5] for some ε > 0). Extending this flow to an

IDE for all times (which we can always do by Theorem 4.15) gives us the desired IDE f . We have
Ψ(f) ≥ LK(3K + 1) and

Ξ(f)
Prop. 3.75

=

∫ Ψ(f)

0

F∆(ζ)dζ ≥
L∑
j=1

K(3K + 1) · ( 1
2 −

j
2L ) · (2U − 3j(3K +K))

≥ K · 3K
L∑
j=1

L−j
2L · 5L · 3

K+1 ≥ K · 32K · L(L− 1).

Finally, we get τ(NK,L) ∈ O(32K) from Claim 20(iii) and UNK,L ∈ O(L3K) from our definition
of U and our subsequent choice of the network inflow rate. Moreover, v0 is the only source node,
the last network inflow happens before time 1 and, by Claim 20(i) there exists a v0, t-path of length
(K − 1)(3K + 1)− 5 · 3K−2 + 6.
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Unfolding the above network into an acyclic network now also provides us with a more interesting
lower bound for acyclic networks (compared to the one from Example 6.14)

Corollary 6.16. There exists a family of acyclic networks ÑK,L and associated IDE fK,L indexed by
two natural numbers K and L such that

• The network size is asymptomatically bounded by 32K +LK3K , i.e. τ(ÑK,L) ∈ O(3K(3K +KL)),

• the total flow volume is asymptomatically bounded by L3K , i.e. UÑK,L ∈ O(L3K),

• we have Ψ(fK,L) ≥ LK(3K + 1) and Ξ(fK,L) ≥ KL(L− 1) · 32K and

• it holds that τpmin(ÑK,L) ∈ O(K3K) as well as τpmax(ÑK,L) ∈ Ω(LK3K).

Here, we denote by τpmin
(ÑK,L) and τpmax

(ÑK,L) the free flow times along the physically shortest and
longest source-sink-path in ÑK,L, respectively.

Proof. We construct ÑK,L in a similar way as NK,L in the proof of Theorem 6.15 (cf. Figure 45).
Only, this time, we use LK copies of gadget C and a single copy of gadget BK . Furthermore, we add
one sink node t and 3K + 1 nodes w0, w1, . . . , w3K . Then, instead of connecting the gadgets C directly
to gadget BK or the sink (as before) we connect the i-th output node of every copy of gadget C with
an edge of free flow travel time and capacity 1 to node wi. From there we add one edge to the i-th
input node of BK or directly to the sink (for i = 0). These edges all have a capacity of 1 and a free
flow travel time of 3K − 7 and (K − 1)(3K + 1)− 5 · 3K−2 + 3, respectively. Finally, we remove the
backwards edges v0v1 from every copy of gadget C and instead connect node v0 of any gadget C with
node v1 of the next gadget C. Using the same inflow rate as in network NK,L, but only in the first
copy of gadget C, the “same” flow as in network NK,L is also an IDE in this new network and satisfies
the same lower bounds on the three quality measures.

Note, that in any single copy of gadget C this flow then only uses one of the K parallel v1, v0-paths
through this gadget. Thus, we can remove K − 1 of those paths from every gadget without making
the flow infeasible. After this change, the sum of free flow travel times in any copy of gadget C is in
O(3K). Thus, together with the bound from Theorem 6.15 we get τ(ÑK,L) ∈ O(32K + LK3K).

Remark 6.17. Note that, after the deletion of the unused parallel path in the construction ÑK,L the flow
fK,L actually becomes the unique IDE in this network. Thus, the lower bounds from Corollary 6.16
hold not just for one but for all IDE in this network. A similar strengthening of Theorem 6.15 can be
achieved (without increasing the asymptotic bound on the size of the network) by using K copies of
the cycling gadget instead of just 1 and then connecting them in a similar way to the construction of
ÑK,L.

6.2.2. Multi-Commodity Networks

In the last subsection we saw that in a single-commodity IDE a small amount of flow can keep a much
larger amount of flow from making any progress towards the sink for quite a long time. However,
eventually, such an IDE still must terminate as the part of the flow used for blocking the rest of the
flow is necessarily closer to the sink and, thus, cannot be blocked itself (this is exactly the main insight
that allowed us to prove termination of single-commodity flows in Subsection 6.1.2).

For multi-commodity IDE this need not be true anymore: If the blocking flow belongs to a different
commodity than the cycling flow, it could itself be separated from its sink by that cycling flow. Thus,
the cycling flow could, simultaneously, act as blocking flow for its blocking flow. Hence, conceptually,
a two commodity network with two cycles inbetween two sink nodes could be able to trap an IDE
flow forever (cf. Figure 46). In fact, the instance used by Ismaili to show that GPS-agents in a packet
routing game with current information setting may cycle forever ([Ism17, Theorem 8]) has almost
exactly this form. However, despite the apparent similarity between this discrete and our continuous
model, this result can not be directly transferred to our setting. The main difference here is that in
Ismaili’s model packets increase the current travel time on an edge (as perceived by other agents)
even if they themselves do not actually experience any increased travel time (because the capacity of
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Figure 45: Part of the network ÑK,L constructed for the proof of Corollary 6.16

the edge they are currently traversing is not exceeded). This allows Ismaili to construct an instance
wherein individual agents observe a constantly fluctuating current travel time (which allows them
to travel around a cycle forever) even though in reality there never are any queues anywhere in the
network.

t1 t2

cycling part
for red

blocking part
for blue

cycling part
for blue

blocking part
for red

Figure 46: The general structure of the network we use to construct a 2-commodity network in which
IDE never terminate.
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In contrast, for our model we require actual queues to form (and disperse) in some repeated pattern
in order to affect the behaviour of our flow particles. This, in turn, requires for the flow particles
waiting in such a queue to be able to catch up again to the particles leaving the queue earlier in order
to be able to build up the same queue again later. However, the general idea of constructing a network
consisting of two parts – each of them containing flow of one commodity and separating the other flow
from its sink – is exactly what we will use in the proof of the following theorem:

Theorem 6.18. There exists a two-commodity network with finitely lasting network inflow rates and
all free flow times and capacities equal to 1 wherein no IDE ever terminates.

Proof. We, once again, construct the network out of several smaller gadgets. Our main building
block will be a cycling gadget6 Cki (Figure 47) consisting of two cycles vw,wy1, y1y2, y2v and
vw,wx1, x1x2, x2x3, x3v of length 4 and 5, respectively, which share one common edge vw. Additionally,
there are three nodes z1, z2 and z3 and edges wz1m y2z2 and x3y3. The two parameters are the
commodity i ∈ I = { 1, 2 } and a time shift k ∈ N0. The only node with positive network inflow is
node v with a network inflow rate of 2 for commodity i during the interval [k, k + 1].

v

w

x1

x2

x3

y1

y2

z1

z2

z3

t1

p1

p2

p3

2 · 1[k,k+1]

k +1 +2 +3 +4 +5

1
2
3
4

k +1 +2 +3 +4 +5

1
2
3
4

k +1 +2 +3 +4 +5

1
2
3
4

Figure 47: The cycling gadget Ck1 . Dashed edges and nodes are not part of the gadget and only
indicate its correct embedding into a larger network. The graphs on the paths p1, p2 and
p3 indicate the waiting times assumed to be on those paths in Claim 21.

We will embed this gadget into a larger network in such a way that the only edge entering this
gadget ends at node v and the only outgoing edges start at nodes w, z1, z2 and z3. Furthermore, we
have a physically shortest zj , ti-path pj (where ti will be the unique sink node of commodity i) for
each j ∈ [3] which share the same free flow travel time. Finally, any other path towards the sink ti
starting at either z1, z2 or z3 has a free flow travel time of at least 4 more than the paths pj and any
other w, ti-path has a free flow travel time of at least 5 more.

Claim 21. Assume that gadget Cki is correctly embedded into a larger network N and f is an IDE in
the larger network. Additionally, assume that f satisfies the following properties:

• No flow enters gadget Cki from outside the gadget.

• The waiting time on path p1 is at least 4 during each interval [5n+k+1, 5n+k+3] and 0 during
each interval [5n+ k + 4, 5n+ k + 5] for n ∈ N0 (e.g. as in the graph on path p1 in Figure 47).

• The waiting time on path p2 is more than 1 during each interval [5n+ k + 1, 5n+ k + 2), less
than 1 during (5n+ k + 2, 5n+ k + 3] and at least 3 during each interval [5n+ k + 4, 5n+ k + 5]
for n ∈ N0.

6Note that, while this gadget serves a similar function to and bears the same name as the cycling gadget C from the
proof of Theorem 6.15, its structure is quite different.
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• The waiting time on path p3 is 0 during each interval [5n + k + 1, 5n + k + 3] and at least 3
during each interval [5n+ k + 4, 5n+ k + 5] for n ∈ N0.

Then the flow inside the gadget exhibits the pattern displayed in Figure 48. In particular,

(i) No flow ever leaves the gadget.

(ii) The waiting time on edge vw increases linearly from 0 to 1 during each interval [5n+k, 5n+k+1]
and decreases linearly from 1 to 0 during [5n + k + 1, 5n + k + 2] for n ∈ N0. Otherwise the
waiting time on this edge is 0.

(iii) Moreover, if the assumed waiting time pattern holds only until some time ξ ∈ R≥0, then the
waiting time pattern described in (ii) holds until time ξ + 1.
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Figure 48: The flow pattern inside gadget Ck1 as stated in Claim 21. Note that after time θ = k + 5
this pattern repeats with a periodicity of 5.

Proof. We show this claim by describing the flow evolution inside this gadget: Since no flow enters
the gadget from outside, there is no flow inside the gadget before time θ = k. After that, flow of
commodity i enters the network at node v at a rate of 2 for a unit time interval. As vw is the only
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edge leaving node v all flow enters this edge, forming a queue of size 1 by time k + 1. After that the
network inflow stops and, thus, the queue depletes and is empty again at time k+ 2. Thus, there is an
outflow from edge vw at a rate of 1 during [k + 1, k + 3]. By our assumption the waiting time along
path p1 is at least 4 and exactly 0 along path p3 during this interval. Thus, edge wz1 is never active
during this interval. Moreover, during [k + 1, k + 2) we have a waiting time of more than 1 along path
p3. Hence, edge wx1 is the only active edge leaving w during this time and all flow arriving at node w
enters this edge. During (k + 2, k + 3] the waiting time on path p2 is less than 1, edge wy1 becomes
the unique active edge leaving w and, therefore, all flow enters this edge. During [k + 4, k + 5] the
waiting times along both paths p2 and p3 are at least 3 while the waiting time on path p1 is 0. Thus,
both edges x3z3 and y2z2 are inactive and flow enters both edges x3v and y2v at a rate of 1 during
this interval. Finally, this flow arrives back at node v at a combined rate of 2 during [k + 5, k + 6] at
which point the described pattern repeats. This shows properties (i) and (ii).

For property (iii) we observe that the queue on edge vw until some time ξ + 1 is completely
determined by the edge inflow rate on edges x3v and y2w until time ξ. Therefore, if the waiting time
pattern on the paths pj is as assumed until time ξ, the inflow into those two edges follows the pattern
described before at least until time ξ as well and, thus, the queue on edge vw follows the desired
pattern at least until time ξ + 1. �

By connecting multiple copies of gadget Cki in series (with different values of k) we can now
essentially create paths with essentially any 5-periodic waiting time pattern. In particular, we can
build paths exhibiting the waiting time patterns required on the paths p1, p2 and p3. We will, thus,
create three types of blocking gadgets7 B1,k

i , B2,k
i and B3,k

i – parametrised again by the commodity
i ∈ { 1, 2 } in the cycling gadgets used to construct the blocking gadget and a time shift k ∈ N0.

Gadget B3,k
i is constructed as follows (Figure 49): We take three copies of gadget Ck+3

i and three
copies of gadget Ck+4

i . We then connect these gadgets in series with 3 edges between each of them,
i.e. we add a path consisting of three edges starting at node w of the first copy of gadget Ck+3

i to the
node v of the second copy and so on. Then, we add two new nodes v and w and add an edge from the
new node v to the node v of the first copy of Ck+3

i and a path consisting of 25 edges from node w of
the third copy of Ck+4

i to the new node w. Finally, we add six more new nodes zk+m
j for j ∈ [3] and

m ∈ { 3, 4 }. We then connect each node zj of each copy of gadget Ck+m
i with a direct edge to node

zk+m
j .
Gadgets B1,k

i and B2,k
i are constructed analogously: For gadget B1,k

i we use four copies of each
gadget Ck+0

i , Ck+1
i and Ck+2

i and connect them in series with three edges inbetween each consecutive
pair. This time, however, we connect node w of the last copy of Ck+3

i to the new node w of gadget
B1,k
i with only a single edge. Additionally, we have nodes zk+m

j for j ∈ [3] and m ∈ { 0, 1, 2 } which
have incoming edges from the nodes zj of the gadgets Ck+m

i as before. For gadget B2,k
i we use two

copies of Ck+0
i one copy of Ck+1

i and three copies each of Ck+3
i and Ck+4

i . We connect those again in
series (always with three edges inbetween) and connect the last node w to the new node w with a
path of length 13. Finally, we have nodes zk+m

j for j ∈ [3] and m ∈ { 0, 1, 3, 4 } which have incoming
edges from the nodes zj of the gadgets Ck+m

i .
We will later embed these gadgets into a larger network in such a way that the only incoming edge

to gadget B`,ki enters at node v and the only outgoing edges start at node w and at the nodes zk+m
j .

Furthermore, we will ensure that for every zk+m
j there is a unique physically shortest zk+m

j , ti-path
pk+m
j with equal length while every other path towards ti starting at at some node zk+m

j has a free
flow travel time of at least 4 more than the paths pk+m

j , Moreover, there exists no w, ti-path.

Claim 22. Any gadget B`,ki has the following property:

(i) There exists a unique v, w-path and it has a free flow travel time of 47.

Assume that a gadget B`,ki is correctly embedded into a larger network N and f is an IDE in the larger
network. Additionally, assume that f satisfies the following properties:

7Again, this gadget should not be confused with its namesake from the proof of Theorem 6.15.
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Figure 49: The gadget B3,k
1 . The graphs next to the gadgets Ck

′

1 indicate the waiting time pattern on
the central edge vw of the respective gadget. The graph to the left of the whole gadget
B3,k

1 indicates the resulting waiting time pattern on the whole central v, w-path through
this gadget. The red graphs on the paths pk

′

j indicate the required waiting time pattern on
those in order to keep the flow inside B3,k

1 stable (i.e. the assumption in Claim 22).

• No flow enters gadget B`,ki from outside the gadget.
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• The waiting time on path any pk+m
1 is at least 4 during each interval [5n+k+m+1, 5n+k+m+3]

and 0 during each interval [5n+ k +m+ 4, 5n+ k +m+ 5] for n ∈ N0.

• The waiting time on any path pk+m
2 is more than 1 during each interval [5n+ k+m+ 1, 5n+ k+

m+ 2), less than 1 during (5n+ k +m+ 2, 5n+ k +m+ 3] and at least 3 during each interval
[5n+ k +m+ 4, 5n+ k +m+ 5] for n ∈ N0.

• The waiting time on any path pk+m
3 is 0 during each interval [5n+ k +m+ 1, 5n+ k +m+ 3]

and at least 3 during each interval [5n+ k +m+ 4, 5n+ k +m+ 5] for n ∈ N0.

Then the flow inside the gadget exhibits the pattern displayed in Figure 49. In particular,

(ii) No flow ever leaves the gadget.

(iii) For ` = 1 the waiting time along the unique v, w-path through gadget B1,k
i is 4 during each

interval [5n+ k + 1, 5n+ k + 3] and 0 during each interval [5n+ k + 4, 5n+ k + 5] for n ∈ N0.

(iv) For ` = 2 the waiting time along the unique v, w-path through gadget B2,k
i is more than 1 during

each interval [5n+ k + 1, 5n+ k + 2), less than 1 during each interval (5n+ k + 2, 5n+ k + 3]
and 4 during each interval [5n+ k + 4, 5n+ k + 5] for n ∈ N0.

(v) For ` = 3 the waiting time along the unique v, w-path through gadget B3,k
i is 0 during each

interval [5n+ k + 1, 5n+ k + 3] and 3 during each interval [5n+ k + 4, 5n+ k + 5] for n ∈ N0.

(vi) Moreover, if the assumed waiting time pattern holds only until some time ξ ∈ R≥0, then the
waiting time pattern described in (iii), (iv) or (v), respectively, holds until time ξ + 1.

Proof. First, it is clear from the construction that there is a unique v, w-path in any gadget Bn,ki via
the edges vw of every gadget Cki used in the construction. The number of edges in this path is

• 1 + 12 · 1 + 11 · 3 + 1 = 47 for gadget B1,k
i ,

• 1 + 9 · 1 + 8 · 3 + 13 = 47 for gadget B2,k
i and

• 1 + 6 · 1 + 5 · 3 + 25 = 47 for gadget B3,k
i .

This shows property (i).
For the remaining properties we start by observing that all gadget Cki used in the construction are

embedded correctly in the larger network: For any node zj in any copy of gadget Ck+m
i there exists a

zj , ti-path pj := zjz
k+m
j , pk+m

j of equal length. Any other zj , ti-path also has to go over node zk+m
j

first and, thus, has a free flow travel time of at least 4 more by our assumption that Bn,ki is correctly
embedded. Any w, ti-path p′ which is not wz1, z1z

k+m
1 , pk+m

1 either also leaves gadget Ck+m
i via z1

(free flow travel time 1 before even arriving at z1) or it leaves directly at node w and traverses another
gadget Ck+m′

i (free flow travel time of at least 5 before arriving at some node zj′ in that next gadget).
In both cases our assumption that Bn,ki is correctly embedded into the larger network guarantees that
the free flow travel time along p′ is at least 5 more than along a shortest zj , ti-path.
Next, we note that the claim’s assumptions on the waiting times on the path pk+m

j exactly match
the assumptions on the waiting times along path pj in Claim 21. Thus, within each gadget Ck+m

i the
flow exhibits the properties stated in this claim. In particular, no flow leaves any of those gadgets
and, hence no flow leaves gadget Bn,ki (i.e. property (i) holds). Moreover, the waiting time along the
central v, w-path through gadget Bn,ki is just the sum of the waiting times specified in Claim 21(ii).
It is now easy to see that these waiting times satisfy properties (iii), (iv) or (v), respectively.

Moreover, Claim 21(iii) implies that this waiting time pattern holds until at least ξ+ 1 if the waiting
time pattern on the paths pk+m

j satisfies our assumptions until at least time ξ. Thus, property (vi)
holds as well. �
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Now, to build the full network N (cf. Figure 50) we take one copy of each gadget Bn,ki for n ∈ [3],
k ∈ [5] − 1 and i ∈ [2] and one sink node t1 and t2 for each commodity 1 and 2. We then connect
these as follows: For any gadget Bn,ki we connect its node w with a direct edge to commodity (i+ 1)’s
sink node ti+1 and any node zk+m

j with a direct edge to the the node v of gadget Bj,k+m
i+1 (where both

the index i+ 1 in ti+1 and Bj,k+m
i+1 and the superscript k +m in Bj,k+m

i are to be read modulo 5).

v
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Figure 50: A sketch of the whole network constructed in the proof of Theorem 6.18. Commodity 1 is
blue and commodity 2 is red. Not all copies of gadgets Bn,ki and not all connecting edges
are drawn.

We first show that every gadget Bn,ki is correctly embedded in N . For any node zk+m
j in gadget

Bn,ki there exists the following zk+m
j , ti-path pk+m

j of length 49: First the direct edge towards node v of
gadget Bj,k+m

i+1 , then the direct v, w-path through this gadget (with length 47 according to Claim 22(i))
and then the direct edge from node w to the sink ti. Any other zk+m

j , ti-path must start the same

way but then leave gadget Bj,k+m
i+1 towards some gadget Bn

′,k′

i . By the time the path enters this
gadget the alternative path has already accumulated a length of at least 6 and still has to traverse one
complete gadget Bn

′′,k′′

i+1 in order to reach the sink ti, giving us a total free flow travel time of at least
47 + 6 = 49 + 4. Additionally, it is immediately clear from the construction of network N that there
exists no w, ti-path from node w in gadget gadget Bn,ki . Thus, gadget Bn,ki is correctly embedded in
network N .

Now let f be any IDE in N . Let gadget Bn,ki be any blocking gadget used in the construction of N .
We then show via induction on ξ ∈ N0 that f exhibits the pattern described in Claim 22 until at least
ξ.

Base Case (ξ = 0): This is trivially satisfied.

Induction Step (ξ → ξ + 1): By construction and induction the waiting time pattern on all paths
pk+m
j leaving gadget Bn,ki+1 satisfy the assumption on the waiting pattern in Claim 22 until at
least time ξ. Then we know from Claim 22(vi) that the desired waiting time pattern inside
gadget Bn,ki until at least time ξ + 1.

This now shows, in particular, that f never terminates (as all waiting times would be forever zero
after the flow terminates).

Remark 6.19. An interesting use for the instance constructed in the proof above has been proposed
by Hagenmaier in [Hag23]: Since this instance has a unique IDE which one can describe for all
times, it can be used as a (quite complex) benchmark instance for numerical algorithms that compute
(approximate) IDE when testing how close the computed flows stay to an exact IDE over time.
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6.3. The Price of Anarchy
A good way of summarizing the results from this chapter is by turning them into asymptotic bounds
for the Price of Anarchy of IDE. In general, the Price of Anarchy (PoA) of any game, as introduced
by Koutsoupias and Papadimitriou in [KP99; Pap01], is the worst case ratio of the objective in an
equilibrium to the optimal objective. For a single network we define the following PoA:

Definition 6.20. Let N be a feasible network with finitely lasting network inflow rates. Then we
define the makespan Price of Anarchy for N by

Ψ−PoAN := sup

{
Ψ(f)

Ψ(g)

∣∣∣∣ f an IDE in N and g any feasible flow in N
}
.

Analogously, we define the total travel time Price of Anarchy for N by

Ξ−PoAN := sup

{
Ξ(f)

Ξ(g)

∣∣∣∣ f an IDE in N and g any feasible flow in N
}
.

Now, instead of calculating the PoA for individual networks, we will consider whole classes of
networks and derive asymptotic bounds for the PoA parametrised in the total flow volume U and the
size of the networks τ .

Definition 6.21. Let N be some class of feasible networks with finitely lasting inflow rates. Then we
define for any two natural numbers U, τ ∈ N0 the makespan Price of Anarchy for N by

Ψ−PoAN(U, τ) := sup

{
Ψ−PoAN

∣∣∣∣ N = ((V,E), τ, ν, I, u, T ) ∈ N with∑
e∈E τe ≤ τ and

∑
i∈I Ui(θ̂i) ≤ U

}
.

Analogously, we define the total travel time Price of Anarchy for N by

Ξ−PoAN(U, τ) := sup

{
Ξ−PoAN

∣∣∣∣ N = ((V,E), τ, ν, I, u, T ) ∈ N with∑
e∈E τe ≤ τ and

∑
i∈I Ui(θ̂i) ≤ U

}
.

In order to get good lower bounds on these PoA we need one final construction which allows us to
transform a network into one with a very simple optimal flow (and low makespan/total travel time)
but still essentially the same IDE.

Lemma 6.22. Let N be a feasible network with finitely lasting bounded network inflow rates, size
τ(N ) and total flow volume UN . Let M ≥ 0 be an essential bound to all network inflow rates
S := { (s, i) ∈ V × I | us,i 6= 0 } the set of source nodes and for any (s, i) ∈ S the path ps,i a (physically)
shortest s, Ti-path with free flow travel time τps,i . Then, there exists a network Ñ which includes N
as a subnetwork and satisfies the following properties:

(i) The size of Ñ is τ(N ) + |S| · (5 + 3θ̂) and the total flow volume in Ñ is UN +
∑

(s,i)∈S(2θ̂+ τps,i)

(ii) There exists a Vickrey flow g in Ñ with Ψ(g) = 4+2θ̂ and Ξ(g) = (3+θ̂)
(
UN+

∑
(s,i)∈S(τps,i+2θ̂

)
.

(iii) There exists a one to one correspondence between IDE f in N and IDE f̃ in Ñ such that we
have f̃+

e,i(θ + 2 + 2θ̂) = f+
e,i(θ) for all θ ∈ R≥0, i ∈ I and all edges e from the original network.

Proof. We transform N into Ñ as follows: For any (s, i) ∈ S let ts,i ∈ Ti be the the end node of ps,i.
We then add the following nodes and edges to N (cf. Figure 51): Two new nodes s̃ and w̃ and four
edges:

• an edge s̃ts,i with free flow travel time 3 + θ̂ and capacity M̃ := max {M + 1, τps,i + θ̂ },

• an edge w̃ts,i with free flow travel time 1 and capacity 1,
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• an edge s̃w̃ with free flow travel time 1 + θ̂ and capacity M̃ and

• an edge w̃s with free flow travel time θ̂ and capacity M .

Finally, we set the network inflow of commodity i at node s to zero and instead define the following
network inflow rate at node s̃:

ũs̃,i(θ) :=


τps,i + θ̂, if θ ∈ [0, 1)

1 + us,i(θ − 1), if θ ∈ [1, θ̂ + 1]

0, else.

s

ts,i

ps,i

N

us,i

=⇒

s̃

ts,i

ps,i

N
w̃s

(1 + θ̂, M̃) (θ̂,M)

(3 + θ̂, M̃
)

(1, 1)
ũs̃,i :=

{
(τps,i + θ̂) · 1[0,1)

(1 + us,i(_− 1)) · 1[1,θ̂+1)

Figure 51: The transformation of N into Ñ for the proof of Lemma 6.22 at a single source node s of
commodity i.

The size of the new network is then

τ(Ñ ) = τ(N ) +
∑

(s,i)∈S

(5 + 3θ̂)

while the total flow volume is
UN̂ = UN +

∑
(s,i)∈S

(2θ̂ + τps,i).

This shows property (i).
Now let f̃ be any IDE in the newly constructed network. First, we observe that there will be no

flow inside the part from the original network N before time 1 + 2θ̂. Thus, f̃ starts in the following
way: During the interval [0, 1 + θ̂) the only active source-sink-paths are the paths s̃w̃, w̃ts,i. Thus, all
flow entering the network enters theses paths. During [1 + θ̂, 2 + θ̂] the flow arriving at node w̃ enters
the direct edge towards ts,i building up a queue there. At time 2 + θ̂ this queue reaches a length of
τps,i + θ̂ − 1 and, hence, the edge w̃s becomes active as well. From here on, the flow arriving at node
w̃ enters the edge towards ts,i at a rate of 1 (to keep the queue length constant) while the rest of
the flow enters the edge towards s. Thus, flow arrives at node s exactly at a rate of us,i(_ + 2 + 2θ̂)

during [2 + 2θ̂, 2 + 3θ̂]. From here on f̃ can behave in exactly the same way as any IDE in the original
network N just with a time shift of 2 + 2θ̂. This shows property (iii).
For property (ii) we consider the flow g in Ñ where we send all network inflow along the direct

edges s̃ts,i. As the capacity on these edges are large enough such that no queues ever form there, this
flow then terminates by time 1 + θ̂ + 3 + θ̂ and, thus, satisfies

Ψ(f) = 4 + 2θ̂ and Ξ(g) = (3 + θ̂)
(
UN +

∑
(s,i)∈S

(τps,i + 2θ̂
)
.
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With this Lemma we can now derive the following asymptotic bounds for the PoA of IDE:

Theorem 6.23. Let NSC be the class of feasible single-commodity networks with finitely lasting,
essentially bounded network inflow rates, strictly positive, integer free flow travel times and capacities
and no dead-end nodes. Then we have

Ψ−PoANSC(U, τ),Ξ−PoANSC(U, τ) ∈ O(Uτ).

Furthermore, for large enough τ and U ≥
√
τ log τ we have instances N ∈ NSC with

Ψ−PoAN ,Ξ−PoAN ∈ Ω(U log τ).

Let Nac be the class of feasible acyclic networks with finitely lasting, essentially bounded network
inflow rates, strictly positive, integer free flow travel times and capacities and no dead-end nodes. Then
we have

Ψ−PoANac(U, τ),Ξ−PoANac(U, τ) ∈ O(U + τ)

Furthermore, there exist instances N ∈ Nac with

Ψ−PoAN ,Ξ−PoAN /∈ O(U + τpmin).

Let NMC be the class of feasible (multi-commodity) networks with finitely lasting inflow rates and
non-zero integer capacities and free flow travel times. Then we have

Ψ−PoANMC(U, τ) = Ξ−PoANMC(U, τ) =∞

for large enough U and τ .

Proof. We start with NSC: Let N ∈ NSC be any such network with flow volume UN and size τ(N ).
Since we do not allow any edges of zero free flow time, edges leaving a sink node will always be
inactive (cf. Proposition 2.67k)) and, thus, can be removed from the network without changing any
IDE. Then, according to Theorem 6.12/Remark 6.13, we have Ψ(f) ≤ θ̂ + (UN + 1) · 3τ(N ) and
Ξ(f) ≤ (UN )2 · (11τ(N )+4) for any IDE f in N . On the other hand any Vickrey flow g in N certainly
satisfies Ψ(g) ≥ θ̂ + 1 and Ξ(g) ≥ UN . This gives us the desired asymptotic upper bounds.
For the lower bound we apply the transformation from Lemma 6.22 to the networks NK,L from

Theorem 6.15. This way we obtain networks ÑK,L with the following properties:

• τ(ÑK,L) ∈ O(32K),

• UÑK,L ∈ O(L3K +K3K),

• there exists an IDE f in ÑK,L with Ψ(f) ∈ Ω(LK3K) and Ξ(f) ∈ Ω(KL232K) and

• there exists a Vickrey flow g in ÑK,L with Ψ(g) ∈ O(1) and Ξ(g) ∈ O(L3K +K3K).

Now take any τ, U with τ ≥ 36 and U ≥
√
τ · log τ . Then we can choose K ∈ N0 with K ≥ 3

such that τ ≈ 32K and L ≥ K such that U ≈ L3K . The network ÑK,L then has an IDE f with
Ψ(f) ∈ Ω(LK3K) = Ω(U log τ) and Ξ(f) ∈ Ω(KL232K) = Ω(U2 log τ) and a Vickrey flow g with
Ψ(g) ∈ O(1) and Ξ(g) ∈ O(L3K) = O(U). This shows the lower bound.

Next, we consider Nac. The upper bound then follows directly from Theorem 6.5. For the lower
bound we apply the transformation from Lemma 6.22 to the networks NK,L from Corollary 6.16 to
obtain networks ÑK,L with the following properties:

• τpmin
(ÑK,L) ∈ O(1),

• UÑK,L ∈ O(L3K +K3K),

• there exists an IDE f in ÑK,L with Ψ(f) ∈ Ω(LK3K) and Ξ(f) ∈ Ω(KL232K) and
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• there exists a Vickrey flow g in ÑK,L with Ψ(g) ∈ O(1) and Ξ(g) ∈ O(L3K +K3K).

This proves the lower bound.
Finally, the statement for NMC follows directly from Theorem 6.18 since this Theorem provides

a network in N in which makespan and total travel time of any IDE are infinite. At the same time
there clearly exists a Vickrey flow where both these quality measures are finite. Thus, for all U and τ
larger than the total flow volume and size in this network, we get an unbounded PoA.

Remark 6.24. The above bounds on the Price of Anarchy are equally true for the Price of Stability
([Ans+08]) which is defined in the same way as the Price of Anarchy with the only difference being
that we always take the best instead of the worst equilibrium flow. This is because we can choose the
lower bound instances such that the IDE in them are unique (cf. Remark 6.17).

6.4. Bibliographic Notes and Open Questions
The results presented in this chapter are mostly based on joint work with Tobias Harks published in
[GH22]. The non-termination result for multi-commodity networks (Theorem 6.18) is from our paper
[GH19].8 There we also already showed that IDE in single-commodity networks are guaranteed to
terminate, but could not give any explicit bounds on the termination time. The required strengthening
of that proof (presented here in Theorem 6.12) was inspired by a discussion of the original termination
result with Kathrin Gimmi.
Natural goals for future research arising from this chapter are to close the gap between the upper

and lower bounds for makespan/total travel time for single-commodity networks and finding a
characterisation of multi-commodity networks that guarantee termination in terms of the topological
structure of the underlying graphs. For the former question it seems quite likely that the upper
bounds in particular are not tight as several of the estimations used in the proof of Theorem 6.15 are
rather rough. For the second question we already know from Theorem 6.5 that the class of graphs
guaranteeing termination includes at least all acyclic graphs but it seems quite likely that this class is
much larger. For example, graphs with only a single cycle should certainly still be contained in this
class. A bolder, but still plausible seeming, conjecture would be that planar graphs also guarantee
termination. Our non-termination instance is certainly not planar (note that already in a single
gadget B3,k

i one can easily find a K3,3 as a graph minor – see Figure 49) and it seems unlikely that
the complex interlinking structure needed for non-termination would be possible in a planar graph.
Studying (non-)termination for planar graph would, of course, also be interesting from an application
point of few as real world instances of road networks typically are planar.

Finally, it would also be interesting to know which of the results from this chapter can be extended
to other physical flow models. This seems particularly likely for the upper bound results as their proofs
do not rely to heavily on the exact details of our physical flow model. More precisely, the only two
main places where we use specific properties of the deterministic queuing model in Section 6.1 are in
the induction step of the proof of Claim 14 (when proving the upper bound for acyclic networks) and,
in form of the no-idling property (Corollary 3.24), in the proofs of Corollary 6.9 and Proposition 6.10.

8On a slightly personal note: This was in fact my first ever mathematical result and, thus, makes for a very fitting
theorem to conclude this thesis.
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7. Conclusion
We conclude this thesis with a short summary of its results, a comparison to some corresponding
results in the full information setting and some ideas for potential future research.

7.1. Summary and Comparison to Full Information Equilibria
In this thesis we introduced the concept of instantaneous dynamic equilibria as a model for dynamic
traffic flows with adaptive (selfish) route choice based on current information. We then studied
several key properties of such equilibrium flows: We showed existence in a very general setting and
provided alternative existence proofs for more specialized cases like right-constant flow rates and
single-commodity networks. For these special cases we then investigated the computational complexity
of finding such flows: Here we found that individual extensions can be computed in finite or even
polynomial time, respectively. Moreover, we showed that for the case of single-commodity networks
(with right-constant network inflow) a finite number of such extensions suffices to reach any given
finite time horizon. On the other hand we gave an example for a multi-commodity network with zero
free flow travel times where a certain finite time horizon cannot be reached by any finite number of
(constant) extensions. Additionally, we provided NP-hardness results for several decision problems
involving IDE. Finally, we turned to the quality of IDE. Here, we derived upper and lower bounds for
makespan and total travel time and, in particular, showed that IDE are guaranteed to terminate in
single-commodity networks whereas in multi-commodity networks it is possible for particles in an IDE
to be trapped in a cycle forever.
In the following table we summarize our main results for IDE (left) and contrast them to some

results for the analogous equilibria in the full information setting (right). We use the abbreviations sc
= single-commodity, mc = multi-commodity and rc = right-constant.

current information full information

existence

for sc Yes: for rc inflow using thin
flows and convex optimization
(Thm. 4.36)

Yes: for rc inflow using thin flows
and a fixed point theorem ([CCL15,
Thm. 5])

for mc Yes: for rc inflow using thin
flows and a fixed point theorem
(Thm. 4.31), for p-integrable in-
flows using a fixed point theorem
(Thm. 4.15) or a variational inequal-
ity ([GHS20, Thm. 5.6])

Yes: for rc inflow using thin flows
and a variational inequality ([Ser20,
Thm. 5.10]), for p-integrable in-
flows using a variational inequality
([CCL15, Thm. 8])

uniqueness (of Lv,i)

for sc No: Ex. 3.659 Yes: [CCL15, Thm. 6], [OSK22,
Thm. 3.1]

for mc No: Ex. 3.65 No: [Iry11, Sec. 4]

computation (rc only)

of single extension in polynomial time for sc (Cor. 5.7),
in finite time for mc with τe > 0
(Cor. 5.2)

in polynomial time for series-parallel
networks ([Kai22a, Cor. 32]), in fi-
nite time for sc ([Ser20, Sec. 3.6.1])

9Note that turning the network from Ex. 3.65 into a single-commodity instance does not change the possible flow
patterns in an IDE.
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of entire flow in finite time for sc (Cor. 5.16), may
require Ω(T ) many extensions to
reach time T for sc (Theorem 5.21b))
and infinitely many extensions for
mc with τe = 0 (Ex. 5.17)

may require exponentially many ex-
tensions wrt network size ([CCO22a,
Sec. 5.2]); otherwise unknown

complexity decision problems involving IDE can
be NP-hard (Thm. 5.25)

computing thin flows is in PPAD
([CCL15, Sec. 3])

steady state
(sc only)

No: Thm. 5.21c) Yes: [CCO22a, Thm. 3], [OSV22,
Thm. 3.3]

termination

for sc Yes: Thm. 6.12 Yes: trivial

for mc No: Thm. 6.18 (Yes in acyclic net-
works: Thm. 6.5)

Yes: trivial

quality (sc only) makespan and total travel time PoA
in O(Uτ) ∩ Ω(U log τ) (Thm. 6.23)

makespan PoA = e
e−1 ([CCO22b,

Lem. 6], assuming monotonicity con-
jecture), makespan and total travel
time PoA = 1 for shortest-path net-
works ([KS11, Thm. 4])

We can draw two main observation from this comparison: On the one hand, IDE tend to be less
well behaved when it comes to quality (i.e. termination and PoA) and stability (i.e. uniqueness and
long term behaviour). This is, to some extent, to be expected due to the fact that agents make their
decisions based on incomplete information and could, thus, be seen as a “price of short-sightedness”.
The contribution of this thesis to that aspect is then a study of this price of short-sightedness. On
the other hand, IDE appear to be more open to a certain type of local analysis both when it comes
to positive results (e.g. computation) and when it comes to negative results (i.e. the gadget-based
construction and analysis of quite complicated networks). This allowed us to answer questions for
IDE that are still open for the full information setting (e.g. the number of required extension steps
to construct equilibrium flows). Despite these differences, there are of course also many similarities
between these two types of equilibria – especially when it comes to the model itself. Because of this,
we were able to reuse and adapt several ideas from the full information setting for IDE (e.g. the
description based on node labels or the concept of thin flows).

7.2. Potential Directions for Future Research
As we already discussed several open questions directly related to the results of this thesis in the
“Open Questions”-sections of the respective chapters, we will only discuss three more general topics for
future research in the context of IDE here:

A unified framework for current and full information equilibria: Considering how much of the
model introduced by Koch and Skutella [KS11] and Cominetti, Correa and Larré [CCL15] for the
full information setting we were able to adapt and reuse for the current information setting here, this
raises the question whether there could be a more general model that encompasses both these settings.
Such a general model would ideally allow a generalization of results that hold for both models (e.g.
existence results) and also facilitate a better understanding of which results can be transferred from
one to the other and which ones cannot (and why). Moreover, one could potentially use such a general
model to study a parametrized price of short-sightedness, i.e. how the quality of equilibrium flows is
affected by giving the agents some but not complete knowledge about the future (which might be
more realistic than either of the two extremes of no and full knowledge).
One such general framework has already been proposed by Graf, Harks, Kollias and Markl in the

form of dynamic prediction equilibria [GHKM23], though no theoretical results about the fully general
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model have been shown yet. In particular, there is no general existence result yet that would apply to
both the current and the full information setting. One of the main obstacle in unifying the known
existence results for these two models seems to be the difference in what is the natural definition
of a partial equilibrium flow in the two settings: A flow where all edge flow rates are fixed until
some common time ξ versus one where all edge flow rates are fixed until the earliest entrance time
for particles starting from the source at time ξ. This same difference can also be seen in the exact
definition of thin flows for both settings.

Extensions of the IDE-model: Extending the model presented in this thesis could be interesting for
at least two reasons: Firstly, depending on the application one has in mind, different or more powerful
physical models could be more realistic (e.g. using linear edge delays instead of the Vickrey point
queue model or including spillback effects). Several such extensions have already been studied in the
full information setting (see e.g. [ZM00; SV18]) that could also be studied in the current information
setting. Moreover, as already pointed out throughout this thesis, several of our results do not rely to
heavily on the particular details of the physical model used here and should, therefore, also hold for
other models.
Secondly, one might see the rather large price of anarchy of IDE as a motivation for extensions of

the behavioural model that try to improve the quality of the resulting equilibrium. This could be
done via tolls, by changing the network parameters (which turns the game into a Stackelberg model –
see [BFA15] for such an extension of the full information model) or by letting the agents make their
decisions using more complex predictions based on current (and past) information. The latter setting
has already been studied in [GHKM23] and numerical experiments indicate that this can indeed lead
to an improvement of the overall travel times.

Computational studies: Our positive results with respect to the computation of IDE suggest that
they could be a good target for computational studies. In particular, it should be interesting to contrast
the theoretical worst case quality bounds shown in this thesis with the actual quality of IDE in realistic
instances. Two implementation of dynamic flows that allow for the computation of IDE are already
available: One by Michael Markl (available at https://github.com/ArbeitsgruppeTobiasHarks/
dynamic-prediction-equilibria) and one by Johannes Hagenmaier (available at https://github.
com/johanneshage/ide-repository). The latter also includes a discrete variant of IDE, i.e. current
information equilibria in the competitive packet routing model. Thus, it could also be used to
investigate whether for small enough packet sizes the discrete and continuous version of IDE are close
approximations of each other (similarly to the experimental study [Zie+21] conducted by Ziemke,
Sering, Vargas Koch, Zimmer, Nagel and Skutella for the full information setting).
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A. Index of Definitions

3Sat, 30

Banach space, 18
reflexive, 20

bounded almost everywhere, 15

capacity, 55
closed graph, 23
commodity, 55
current distance, 59
current exit time, 34
current information equilibrium, 10
current travel time

expected, 34
experienced, 32

commodity specific, 46
cycle, 25

dual space, 19
dynamic flow, see flow

edge
active, 59
efficient, 25

edge load, 32
commodity specific, 45

equal almost everywhere, 15
essentially bounded, 15
event

simple, 103
Zeno-, 103

FIFO, 35
first-in first our principle, see FIFO
flow, 55

edge
anonymous, 31
associated anonymous, 45
cumulative, 31
multi-commodity, 45
Vickrey, 48

entering at time θ, 32
feasible, 57
optimal, 63
partial, 69

extension of, 69
respects capacity, 33
terminates, 64
Vickrey, 57

partial, 69
flow balance, 56
flow conservation

at nodes, 56

on edges, 32, 46
free flow travel time, 54
full information equilibrium, 10
function

absolutely continuous, 21
integrable, 16

locally, 16
measurable, 15
non-decreasing, 14
non-increasing, 14
p-integrable, 16

locally, 16
right-constant, 14
strictly increasing, 14

gadget
blocking, 148, 166
clause, 120
cycling, 156, 164
delay, 145
injection, 153
redirect, 155
variable, 120

graph
acyclic, 25
directed, 24
of a function, 23
sub-, 24

IDE, 60
partial, 69
simple, 103

IDE-thin flow, 78
IDE-thin flow augmentation, 84
inflow rate, 31
instantaneous dynamic equilibrium, see IDE

Lebesgue measure, 15

makespan, 63

network, 54
feasible, 55
sub-, 58

network inflow rate, 55
network load, 56
node

dead-end, 55
sink, 55
source, 55

node labels, 25
norm, 18

p-, 19
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uniform, 19
normed vector space, 18
NP-complete, 29
NP-hard, 29
null set, 15

outflow rate, 31

path, 25
active, 59
efficient, 25
length of, 25

periodic state, 117
phase, 103
PoA, 170

makespan, 170
total travel time, 170

preorder, 23
Price of Anarchy, see PoA

queue
operates at capacity, 34
operates fair, 48
starts empty, 33

queue length, 33

set of measure zero, 15
steady state, 117
strong flow conservation

at nodes, 56
on edges, 32

subgraph, 24
ε-sink-like, 137
induced, 25

subnetwork, 58

topological order, 25
topological vector space, 18

locally convex, 18
topology

strong, 18
weak, 19

total travel time, 63
truncated linear function, 97

walk, 25
weak flow conservation

at nodes, 56
on edges, 32
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B. List of Symbols and Notation

Symbol Name Description

General
N0 natural numbers The natural numbers including 0

N∗ positive numbers The natural numbers excluding 0

[n] numbers 1 to n The set { 1, . . . , n }; the empty set for n = 0 (cf.
Sec. 2.1)

[n]− k numbers 1− k to n− k The set { 1− k, . . . , n− k }
R real numbers
R≥0 non-negative real numbers All real numbers ≥ 0

R>0 (strictly) positive real num-
bers

All real numbers > 0

R̃≥0 extended non-negative
numbers

All real numbers ≥ 0 and ∞

d.e ceil function dxe rounds x to the smallest whole number larger or
equal to x

b.c floor function bxc rounds x to the largest whole number smaller or
equal to x

2A power set of A The set of subsets of A
∪̇ disjoint union Used to emphezize that the two sets combinded in

A ∪B are disjoint
O(f) big O The set of functions growing assymptotically at most

as fast as f (cf. Def. 2.70)
Ω(f) big omega The set of functions growing assymptotically at least

as fast as f (cf. Def. 2.70)
v ⊕ w direct sum The direct sum of two vectors (cf. Sec. 2.1)
Topology
Br(x) open ball The open ball of radius r around x (cf. Def. 2.27)
B̄r(x) closed ball The closed ball of radius r around x (cf. Def. 2.27)
‖.‖ norm The norm function of a normed vector space
‖.‖∞ uniform norm The uniform norm on C(J) (cf. Prop. 2.30)
‖.‖p p-norm The p norm on Lp(J) (cf. Prop. 2.31)
Measure Theory
µ Lebesgue measure The Lebesgue measure on R (or some subset of R)

(cf. Def. 2.2)
f =a.e. g equal almost everywhere The functions f and g are equal for almost all θ in

their common domain (cf. Def. 2.5)
f ≤a.e. g essentially bounded by The function f is less or equal to g almost everywhere

on their domain (cf. Def. 2.5)∫
J
f(ζ)dζ Lebesgue integral The lebesgue integral of f over J

Functions and function spaces
∂θf derivative of f The derivative of f with respect to the argument θ.

Index θ can be omitted
∂−f left derivative of f The derivative of f from the left side
∂+f right derivative of f The derivative of f from the right side
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f |A restriction Restriction of function f to subset A of its domain
1A characteristic function The characteristic function of set A (cf. Sec. 2.1)
graph(f) graph of f The graph of a function (cf. Def. 2.55)
f (n) w−→ f weak convergence The sequence (fn) converges to f with respect to

the weak topology (cf. Def. 2.33)
Lploc(J) locally p-integrable func-

tions
The space of locally p-integrable functions on the
interval J (cf. Def. 2.16)

Lploc(J,R≥0) non-negative locally
p-integrable functions

The set of locally p-integrable functions from the
interval J to R≥0 (cf. Def. 2.16)

AC(J) absolutely continuous func-
tions

The space of absolutely continuous functions on the
interval J (cf. Def. 2.44)

AC↗(J) absolutely continuous non-
decreasing functions

The set of absolutely continuous non-decreasing func-
tions on the interval J (cf. Def. 2.44)

Graphs
G = (V,E) directed graph A directed graph with node set V and edge set E

(cf. Def. 2.59)
E(G) edges of G Set of edges of graphG; argumentG usually ommited

vw ∈ E edge from v to w
V (G) nodes of G Set of nodes of graph G; argument G usually om-

mited
δ+
G(v) edges leaving v The set of all edges e = vw ∈ E leaving node v;

index G usually omitted (cf. Def. 2.59)
δ−G(v) edges entering v The set of all edges e = wv ∈ E entering node v;

index G usually omitted (cf. Def. 2.59)
G′ ⊆ G subgraph G′ is a subgraph of G (cf. Def. 2.60)
G[W ] induced subgraph on W The maximal subgraph of G with node set W (cf.

Def. 2.61)
E[W ] edgeset of induced sub-

graph
Networks
N network A network consisting of a graph with free flow travel

times and capacities and commodities with network
inflow rates and sink nodes (cf. Def. 3.48)

τe ∈ R≥0 free flow travel time The time it takes to traverse edge e without any
congestion (cf. Def. 3.48)

νe ∈ R>0 capacity The maximum rate at which particles may traverse
edge e

I commodities Set of commodities; individual commodities are usu-
ally denoted by i

uv,i network inflow rate A locally integrable function denoting the rate at
which particles of commodity i enter the network at
node v

Ti ⊆ V sink nodes Set of sink nodes of commodity i
Si ⊆ V source nodes Set of source nodes of commodity i (cf. Def. 3.48)
V †i ⊆ V dead-end nodes Set of dead-end nodes of commodity i (cf. Def. 3.48)
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Uv,i cumulative network inflow Uv,i(θ) denotes the total volume of flow of commod-
ity i which has entered the network at node v by
time θ (cf. Def. 3.48)

Ui cumulative network inflow Ui(θ) denote the total volume of flow of commod-
ity i that has entered the network by time θ (cf.
Prop. 3.53)

θ̂i ∈ R̃≥0 last inflow time Earliest time such that no flow of commodity i enters
the network after that time (cf. Def. 3.48)

θ̂ ∈ R̃≥0 last inflow time Earliest time such that no flow of any commodity
enters the network after that time (cf. Def. 3.48)

τmax maximal free flow travel
time

The largest free flow travel time of any edge in the
given network (cf. Cor. 6.9)

τpmax
physical length of longest
path

The largest free flow travel time along any v, Ti-path
in a given network (cf. Eq. (48))

νmin minimal capacity The smallest capacity of any edge in a given network
(cf. Eq. (48))

U(N ) total flow volume in N The total cumulative network inflow into N (cf.
Thm. 6.15)

τ(N ) network size The sum of all free flow travel times in N (cf.
Thm. 6.15)

Dynamic flows
f+
e (anonymous) inflow rate A function denoting the inflow rate (of all commod-

ities) into edge e (cf. Def. 3.1)
f−e (anonymous) outflow rate A function denoting the outflow rate (of all commod-

ities) from edge e (cf. Def. 3.1)
fe = (f+

e , f
−
e ) (anonymous) edge flow In- and outflow rate describing the (anonymous) flow

on a single edge e (cf. Def. 3.1)
F+
e (anonymous) cumulative

inflow
A function denoting the cumulative inflow (of all
commodities) into edge e (cf. Def. 3.2)

F−e (anonymous) cumulative
outflow

A function denoting the cumulative outflow (of all
commodities) from edge e (cf. Def. 3.2)

F∆
e (θ) edge load Total volume of flow on edge e at time θ (cf. Def. 3.2)
Ĉe(θ) experienced current travel

time
Experienced travel time on edge e for interchangeable
particles when entering at time θ (cf. Def. 3.7)

f+
e,i (commodity-specific)

inflow rate
A function denoting the inflow rate of commodity i
into edge e (cf. Def. 3.25)

f−e,i (commodity-specific) out-
flow rate

A function denoting the outflow rate of commodity i
from edge e (cf. Def. 3.25)

(f+
e,i, f

−
e,i)i (multi-commodity) edge

flow
In- and outflow rates for all commodities describing
the flow on a single edge e (cf. Def. 3.25)

F+
e,i (commodity-specific) cu-

mulative inflow
A function denoting the cumulative inflow of com-
modity i into edge e

F−e,i (commodity-specific) cu-
mulative outflow

A function denoting the cumulative outflow of com-
modity i from edge e

F∆
e,i(θ) (commodity-specific) edge

load
Total volume of flow of commodity i on edge e at
time θ (cf. Subsection 3.1.2)

Ĉe,i(θ) experienced current travel
time

Experienced travel time on edge e for particles of
commodity i when entering at time θ (cf. Def. 3.7)

Qe(θ) queue length Queue length on edge e at time θ (cf. Def. 3.10)
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Ce(θ) (expected) current travel
time

Current travel time on edge e when entering at time θ
(cf. Def. 3.14)

Cp(θ) (expected) current travel
time

Current travel time expected along some path p when
entering at time θ (cf. Def. 3.60)

Te(θ) (expected) exit time Exit time from edge e when entering at time θ (cf.
Def. 3.14)

Lv,i(θ) (expected) current dis-
tance

The shortest distance from v to the closest sink of
commodity i under the current travel times at time θ
(cf. Def. 3.60)

Ei(θ) active edges The set of active edges for commodity i at time θ
(cf. Def. 3.60)

Pv,i(θ) active paths The set of active v, Ti-path for commodity i at time θ
(cf. Def. 3.60)

Bv,i(θ) node balance The node balance of commodity i at node v at time θ
(cf. Def. 3.50)

F∆
i (θ) network load The total volume of flow of commodity i in the

network at time θ (cf. Def. 3.50)
F∆(θ) network load The total volume of flow in the network at time θ

(cf. Def. 3.50)
Zi(θ) cumulative network out-

flow
Flow volume of commodity i that already left the
network at time θ (cf. Prop. 3.53)

Ψi(f) makespan The last arrival time of any particles of commodity i
at a sink under f (cf. Def. 3.67)

Ξi(f) total travel time The sum of travel times of all particles of commod-
ity i under f (cf. Def. 3.67)

F(N ) dynamic flows The set of all dynamic flows in N (cf. Def. 3.49)
Fpa(N ) partial flows The set of all partial flows in N (cf. Def. 4.1)
F IDE
pa (N ) partial IDE The set of all partial IDE in N (cf. Def. 4.1)

limk(f (k), ξk) limit of partial flows The limit of a sequence (f (1), ξ1) � (f (2), ξ2) � . . .
of partial flows (cf. Def. 4.8)

Φξe edge loading A function mapping edge inflow rates to edge outflow
rates such that together they form a Vickrey edge
flow until ξ (cf. Cor. 3.46)

ψe change of waiting times A function denoting the change of waiting times on
edge e depending on the (constant) future inflow rate
into that edge (cf. Eq. (38))
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