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Setting: Car traffic (continuous flow) in road network (directed graph) creates dynamically changing congestion (queues)
Car drivers (flow particles) choose shortest routes towards their destination and adapt while travelling based on current information
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Vickrey Queueing Model
queue length Qe(θ) :=

∫ θ

0 f+
e (ζ)dζ −

∫ θ

0 f−
e (ζ)dζ

f = (f+
e,i, f

−
e,i) ∈ L1

loc(R,R≥0)
I×{±} Vickrey flow

on edge e with capacity νe and travel time τe if
• queue operates at capacity, i.e. outflow f−

e is
bounded by νe and equal whenever Qe(θ) > 0

• queue operates fairly, i.e. commodity specific
outflow f−

e,i is proportional to that commodity’s
inflow f+

e,i

Prop.: Properties of Vickrey flows:
• existence, uniqueness and continuity of edge-

loading mapping (f+
e,i) 7→ (f−

e,i)

• structure preserving:
constant inflow → pw. constant outflow

• monotonicity: more inflow → more outflow
• no idling: flow cannot stay on edge forever

node label Lw,i(θ) := shortest current distance from w to sink ti of commodity i

Vickrey flow f is Instantaneous Dynamic Equilibrium (IDE) if f+
e,i(θ) > 0 =⇒ e = vw active at time θ, i.e. Lv,i(θ) = τe +

Qe(θ)
νe

+ Lw,i(θ)

Idea: Iteratively extend partial IDE (i.e. an IDE until some fixed time θ) until all flow has reached a sink, e.g.:
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θ = 1:
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Qwt(θ) = 3
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θ = 2:

Qwt(θ) = 3
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θ = 3:

Qwt(θ) = 2
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θ = 4:

Qwt(θ) = 1
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θ = 7:

This reduces the problem to existence/computation of a single extension and a limit/finiteness argument (+ termination).

Existence?

Extension-Lemma

Lem.: For any partial IDE (f, θ) and any ε > 0, there exists
an IDE-extension (g, θ + ε) satisfying
(a) f = g until θ,
(b) flow conservation at nodes during [θ, θ + ε),
(c) Vickrey edge-dynamics during [θ, θ + ε) and
(d) IDE-property during [θ, θ + ε).

Proof: Split into easy and hard constraints:
• K := { (g, θ + ε) satisfies (a) and (b) }

• Γ : K → 2K : g 7→
{
h ∈ K

∣∣∣∣ (g+, h−) satisf. (c)
(h+, g−) satisf. (d)

}
Fix point of Γ is IDE-extension and exists. □

Limit-Theorem

Thm.: A set F of partial flows contains some (f,∞) if
(a) it is non-empty,
(b) any (f, θ) ∈ F has an extension (g, θ + ε) ∈ F
(c) and any ascending sequence has an upper limit.

Proof: Zorn’s Lemma (or inductively, if ε is lower bounded) □

Existence

Thm.: For multi-commodity networks with p-integrable net-
work inflow and τe ∈ R≥0 IDE are guaranteed to exist.

Proof: Apply Limit-Theorem: (a) satisfied by (0, 0), (b) by
Extension-Lemma and (c) because limit of partial IDE is
again a partial IDE. □

Computation?

Extension-Computation

Lem.: In networks with τe > 0 and piecewise-constant
flow rates, we can compute IDE-extensions. For single-
commodity even in polynomial time.

Proof: Formulate as MIP (multi-commodity) or Wardrop
equilibrium problem per node (single-commodity). □

Bounding the Number of Extensions

Lem.: For single-commodity: If node-inflow is constant and
node-labels closer to the sink are linear, then only finitely
many extensions are needed at this node.

Proof: Only finitely many different extensions possible.
“Minimal” one started by different edge every time. □

Computational Complexity

Thm.: Existence of IDE with special properties (e.g. not
using a specific edge ê) is NP-hard.

Proof: Reduction from 3-SAT:
(¬x1 ∧ x2 ∧ xN) ∨ . . . ∨ (¬x1 ∧ ¬x2 ∧ xN)
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□

Thm.: There exists an instance with infinite time horizon
which never reaches a stable state and requires infinitely
many extension of arbitrarily small length.

Quality?
limited information + selfish behaviour = longer travel times
→ Question: Can we bound the makespan of IDE?

Termination for Single-Commodity
“Clear”: In acyclic networks, the makespan is bounded by

total flow volume
min. edge capacity

+ longest path

In general networks, IDE may use cycles (see left) – but closest
flow to the sink cannot. Inductively, this yields:

Thm.: For single-commodity, the makespan is bounded by

O
(

total flow volume
min. edge capacity

· network size
)
.

Slow Termination for Single-Commodity

Thm: There exists a single-commodity IDE with makespan
Ω
(
total flow volume · log(network size)

)
Proof:
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□

Non-Termination for Multi-Commodity

Thm.: In multi-commodity networks, IDE may cycle forever.

Proof: A two-commodity network where all flow cycles forever:
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□

More details in my thesis:
https://lukasmgraf.de/files/phd-thesis.pdf
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